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Abstract

A decision-maker faces a decision problem to choose an action, at a randomly

determined time, to match an unknown state of nature. She has access to a se-

quence of signals partially informative of the current state of nature. The state

of nature evolves according to a Markov chain. The decision-maker is subject to

constraints on information-processing capacity, modelled here by a finite set of

memory states. We characterize when optimal inference is possible with these

constraints and, when it is not, what the optimal constrained inference is in two

broad classes of environments. In the first class where the signals have similar

strengths, optimal inference can be represented by simple rules corresponding

to heuristics, like the “recency bias”, which have been studied by experimen-

tal researchers. In the second class where one signal is very informative, the

constrained optimal rule ignores the possibility of regime changes.
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1 Introduction

In this paper, we consider a model of learning by a single decision-maker, who is

rational but constrained by a finite memory capacity. There are two states of the

world, H and L, unknown to the decision-maker, and a potentially infinite sequence

of signals that she can observe. Our model features “changing worlds”, that is, the

state of the world itself changes according to a Markov process, with transitions also

being unobservable. This new feature allows us to investigate the interaction between

the decision-maker’s memory capacity and the persistence of the process that governs

the transition of the states of the world. This interaction leads to several significant

differences with the analysis of the same problem where the state of the world stays

fixed forever. In particular, we are able to rationalize some well-known heuristics as

optimal responses when the memory constraint is binding.

Some of these differences have analogues in the well-known discussion of systematic

deviations from Bayesian inference. In particular, the “availability heuristic” described

by Tversky and Kahnemann (1974) and the ignoring of regime change arise naturally in

two different environments in our model. The first characterises decision-makers who

rely only on the most recent signals while ignoring all past but relevant informative

events. The latter is reminiscent of descriptions of otherwise well-informed observers

ignoring the possibility of housing price decline in the 2008-9 financial crisis despite

many informative signals about that possibility. Both results can be illustrated in

environments with two signals only, h and `. The first feature is prominent in envi-

ronments where the two signals indicate different states of the world but have similar

strengths. The second feature is prominent in environments where the two signals have

very asymmetric strengths and one of them is very informative.

Following Wilson (2014), we consider a stylized model in which there is an exogenous

probability in any given period (independently across periods and independent of the

signals received) that the decision-maker is called to take a terminal action. The inverse

of that probability is then the expected horizon of the decision problem. Without a

memory constraint, a decision rule is then a mapping from the sequence of signals

received so far to an action to be taken if required. As in Wilson (2014), we model

memory constraints by finite automata, so every decision rule must be implementable

2



through a finite number of internal memory states (not to be confused with states of

the world). If called on exogenously to make a terminal choice, which ends the game,

the decision-maker chooses an action based on the memory state she is in. Updating

cannot be Bayesian, in general, because each memory state corresponds to a category of

posterior beliefs about the state of the world so that only a finite set of such probabilities

can be captured. After observing a signal, the decision-maker may choose to make a

transition to another memory state and this represents the process of updating. Thus,

as explained below, the timing is such that the decision only depends on the current

memory state whilst the updating can depend both on this and on the signal received.

By considering changing worlds, it becomes possible to replicate optimal Bayesian

inference in a constrained setting. When the expected horizon tends to infinity in

the fixed-worlds environment, more and more signals will contribute to the optimal

inference and a finite state automaton with its memory bounded will be unable to

process the large amount of information on offer before a decision has to be made. With

changing worlds, however, if the state of the world is not too persistent, observations

from many periods prior to the current one should have diminishing relevance for a

decision, if required to be made. This possibility comes from the drastically different

dynamics of the Bayesian updating in changing worlds, which consists of two parts,

information from the signal received and accounting for the transition of the state of

the world. For each distinct signal, these two effects give rise to a fixed point for the

posterior such that the posterior remains unchanged when that signal is received, and

the fixed-point is the attraction point toward which the posterior moves. In the fixed-

worlds environment, the only fixed points are zero and one. In the extreme case of

the i.i.d. process, the posterior immediately jumps to its fixed point once a signal is

received, regardless of the current posterior.

We exploit this feature and show that even severely restricted memory can replicate

optimal inference. In particular, we show that when the two signals are of similar

strengths, then the unconstrained optimum can be implemented by a simple rule where

the decision-maker only takes the most recent signal into account when taking her

action, provided that the persistence is sufficiently weak or the signals are sufficiently

informative. This simple rule only requires two memory states to implement, and may

be interpreted as the availability heuristic, as it only uses the most recent signals. But
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this is not biased reasoning as it implements the same decision as Bayesian inferences

would.

Now, what if the signals are not informative enough for this simple rule to implement

the unconstrained optimal payoff? In this case, an unbounded number of memory states

is necessary to achieve that payoff, but we show that, for any given memory constraint

(no matter how large), there is a range of strengths of the signals under which the

availability heuristic is the constrained optimal rule. In other words, the simple rule

that takes the action based only on the most recent signal, which requires only two

memory states, performs better than other finite automata (even with randomization)

with larger sizes. As a result, if we would impose a small cost for each additional

memory state, the optimal number of the states would be two for a range of parameters.

Thus, for a range of signal strengths, under zero cost the optimal number of memory

states is unbounded, but a small cost brings the optimal number to two. Perhaps

surprisingly, this range expands as the persistence increases. In this constrained case,

the availability heuristic does exhibit a recency bias as a fully rational agent should

take previous signals into account, but even for a small cost of memory capacity, the

availability heuristic is the most efficient decision rule.

We also consider the other polar case where the constrained optimal rule completely

ignores recent informative signals. When the information structure is very asymmetric

in the sense that one of the two signals is very informative while the other is mildly so,

we show that the constrained optimal rule is overconfident in the strong signal to the

extent that the decision-maker is fully convinced of the state of the world forever after

one such signal, completely ignoring the possibility of regime change and informative

signals of such a change. This occurs even in the Shiryaev (1978) model of regime

change, where one of the states of the world is absorbing but the other may change.

For a prior that is relatively high on the absorbing state of the world, we show that a

two memory-state finite automaton is optimal for any given size constraint, according

to which after one strong signal, a “surprise,” indicating the other (non-absorbing)

state of the world, the decision-maker acts as if the state of the world is the non-

absorbing one and ignores the possibility of regime change. In contrast, a perfectly

rational decision-maker would eventually be convinced of the absorbing state of the

world, if she received sufficiently many signals indicating this and hence would act
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completely differently. This result holds qualitatively for other priors and is robust to

the introduction of cost of memory states.

Related literature

The strand of literature most related to our work pertains to the issue of learning with

a finite state automaton, starting with Hellman and Cover (1970) which solves the

simple hypothesis problem with finite memory, but using a limit-of-the-means objec-

tive function rather than discounted lifetime utility (or, equivalently, a continuation

probability 1− η). In economics, Wilson (2014) adopts a similar approach but studies

the case where η is close to zero and the state of nature is fixed. Hu (2022) studies

constrained optimal finite automata in an asymmetric signal structure similar to ours,

but in the Wilson (2014) setting with fixed worlds. Other related problems are studied

by Kocer (2010), Monte (2007), and Monte and Said (2014). The study of decision

making under finite state automata is closely related to the study of decision problems

under imperfect recall as in Piccione and Rubinstein (1997) and other related papers,

as will become clearer during our analysis.

We discuss certain points of comparison with the preceding papers. Extending

results in Wilson (2014), we establish a generalised modified multi-self consistency in

the changing-worlds environments, which implies an optimal partition of the posterior

beliefs, each cell corresponds to a memory state and both transition and action rules

are sequentially rational with respect to such beliefs. This result also allows us to derive

conditions under which the optimal decision rule with unconstrained memory can be

implemented by a deterministic finite state automaton. As in Monte and Said (2014),

this demonstrates the lack of need for any sophistication in the decision rule in special

environments as they also show that a two-state finite automaton can implement the

unconstrained optimum. However, as in Hellman and Cover (1970), Monte and Said

use the limit-of-means payoff criterion (that is, the limit case where η converges to

zero) and focus on the symmetric case, and for the constrained case they only consider

two- or three-state finite automata. Thus their result is considerably generalized in our

paper. We show that the availability heuristic can outperform all finite automata with

size no larger than K for any given K, no matter how large, for a range of persistence
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where the memory constraint is binding. This result does require η > 0, but η can be

arbitrarily small. Moreover, we do not need symmetry for the result to hold, as long

as the two signals are not too asymmetric in terms of their informativeness.

A pertinent observation relevant to our ignoring regime change result, in the Shiryaev

model of regime change, appeared in a Boston Federal Reserve discussion paper of 2010,

on the 2008 financial crisis. Writing on the optimistic forecasts of housing prices preva-

lent at that time, Gerardi et al. (2010) documented several regional indicators of a

decline in housing prices (as well as a warning from Shiller, who is quoted in the paper)

but somehow these were never sufficient to trigger a full-scale alarm about a crisis. Ig-

noring these “small” signals, most forecasters did not revise their forecasts downwards

(something incompatible with a fully Bayesian analysis). Nevertheless, ex post many

have argued that the increase in housing prices was a “bubble,” and it would eventually

decline. That is, the current state of nature itself was not fixed but could switch to an

absorbing state, as in the Shiryaev model of regime change. Our results show that it

can be (constrained) optimal to ignore the possibility of regime changes, despite the

continual arrival of informative signals indicating otherwise.1

2 Framework

The framework generalizes the one in Wilson (2014) to allow for changing worlds. Time

is discrete with infinitely many periods t = 0, 1, 2, .... There are two possible states

of the world, θ ∈ Θ = {H,L}. The prior at period 0 is given by P0 ∈ ∆(Θ) and

we use the notation p0 = P0(H). The state of the world θt ∈ Θ evolves according to

a Markov process over time and is unobservable, with the transition matrix given by

Table 1, where ∆θ is the probability that the state of the world θ ∈ {H,L} persists

to the next period and 1 − ∆θ is the probability that the state of the world switches

from θ to the other state, with ∆H , ∆L ∈ [0, 1]. When ∆H + ∆L = 1, we have the

i.i.d. environment. In contrast, when ∆H + ∆L = 2, ∆H = 1 = ∆L and we have the

1Such behaviour has been used as a building block to understand the financial crisis; see, for

example, Gennaioli et al. (2013), where investors neglect tail risks in formulating their strategies in a

model of shadow banking.
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H L

H ∆H 1−∆H

L 1−∆L ∆L

Table 1: Transition matrix of states of the nature

fixed-worlds environment. We assume

∆H + ∆L ∈ [1, 2], (1)

and hence both states are somewhat persistent (except for at the limit).

In each period, with probability η the decision-maker (DM) has to take a terminal

action a ∈ A = {aH , aL} with the utility function

u(aH , H) = uH > 0, u(aL, L) = uL > 0, u(aH , L) = 0 = u(aL, H).

The state of the world, though unobservable, can be inferred from signals received

from a finite set X. Conditional on the current state of the world θ, the probability of

receiving signal x is given by µθx. We use ξx ≡ µHx /µ
L
x to denote the likelihood ratio of

signal x.

The timing of the model is as follows. In period 0 if the DM is called upon to make

the final decision, then it will be done only based on the prior. Otherwise, at the end of

the period the state of the world may transit according to the transition probabilities,

and, after the transition, the DM receives a signal at the beginning of period 1, x1. If the

DM is called upon to take a decision in period 1, then x1 is taken into account, as well

as the possible transition (though unobservable) that may have happened. Otherwise,

the state of the world may transit at the end of period-1 according to the transition

probabilities, and so on. A decision rule, denoted by D, then maps a partial history

of signal realizations, x = (x1, ..., xt), at period t = 0, 1, 2, ..., to a terminal action that

the DM would take if called upon, where the history is empty when t = 0.

Without any memory constraint, the DM chooses the optimal action depending on

the posterior belief at the time to make a decision, and we use p to denote the posterior

on H. Given p, the optimal action is to choose aH if ξ(p) ≡ p/(1−p) > ξ∗ ≡ uL/uH and

it is aL if ξ(p) < ξ∗, and the DM is indifferent between the two actions when ξ(p) = ξ∗,
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where ξ(p) denotes the likelihood ratio for the posterior p. When the current posterior

on H is p, the likelihood ratio of the updated posterior p′ following a possible transition

and then receiving signal x is given by

ξ(p′) = γ(p; ξx) ≡
ξ(p)∆H + (1−∆L)

ξ(p)(1−∆H) + ∆L
× ξx. (2)

According to (2), the likelihood ratio of the new posterior is a product of two terms:

the first term takes into account the transition probabilities of the state of the world

and updates the posterior accordingly, and the second term is the likelihood ratio of the

signal received and is multiplied by the updated posterior obtained in the first term.

The effect of the second term is familiar: when ξx > 1, it increases the posterior and

decreases it otherwise. The effect of the first term depends on the current position of

the posterior relative to the invariant distribution, whose likelihood ratio is denoted by

ξ̄, and the first term always moves toward ξ̄. Moreover, when ∆H + ∆L = 1, i.e., the

i.i.d. case, the first term is always equal to ∆H/(1−∆H) = ξ̄ and is independent of ξ(p).

That is, in the i.i.d. case the new posterior is independent of the previous posterior

and hence memory does not matter. When ∆H = ∆L = 1, i.e., the fixed-worlds

environment, the first term is ξ(p), and the memory matters most. As a result, the

overall direction of the posterior change depends not only on ξx, but also on ξ(p), and

the following lemma shows that the direction can be characterized by the fixed-point

of γ. Note that γ strictly increases with p as long as ∆H + ∆L ∈ (1, 2).

Lemma 2.1. Suppose that ∆H + ∆L ∈ (1, 2). Then, for each x ∈ X, there is a unique

p̄x such that

ξ(p̄x) = γ(p̄x; ξx). (3)

p̄x < p̄y if and only if ξx < ξy. Moreover, γ(p; ξx) < ξ(p) if and only if p > p̄x.

A notable feature of Bayesian updating under changing worlds is that γ(p, ξx) < ξ(p)

if p > p̄x while γ(p, ξx) > ξ(p) if p < p̄x, that is, the posterior always moves toward

the fixed-point p̄x. Moreover, except for the extreme case where ∆H + ∆L = 1 (that

is, the i.i.d. case), γ(p, ξx) ∈ (ξ(p̄x), ξ(p)) if p̄x < p and γ(p, ξx) ∈ (ξ(p), ξ(p̄x)) if

p̄x > p, that is, the posterior will be closer to the fixed-point but would never reach

it by receiving signal x (but could pass it or reach it by other signals). In the limit
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case where ∆H + ∆L → 2 (that is, the fixed-world environment), p̄x → 1 if ξx > 1 and

p̄x → 0 if ξx < 1. Finally, it is straightforward to verify that if ξx = 1, then ξ(p̄x) = ξ̄.

Hence, p̄x > p̄ if ξx > 1 and p̄x < p̄ if ξx < 1.

Finite automata and multiself consistency

We focus on decision rules that can be implemented by a finite automaton with a

given number of memory states. A stochastic finite-state automaton (SFSA) or simply

an automaton is a tuple M = 〈Q, σ, d, qo〉, where Q is a finite set of memory states,

σ : Q × X → ∆(Q) is a transition function, d : Q → A is an action rule and qo ∈ Q
is the initial memory state.2 The automaton makes decisions as follows: at period

0, if called upon to take the terminal action, it is based on d(q0) with q0 = qo, the

initial memory state. In period 1, after receiving the signal x1, the DM then moves

to the next memory state according to the transition probabilities given by σ(q0, x1).

Similarly, at a given period t, the DM begins with the memory state qt−1 ∈ Q, and,

after receiving signal xt, the memory state moves to qt according to the transition

probabilities σ(qt−1, xt). If called upon to take a terminal action, it is then given by

d(qt). When all the transition rules are deterministic, we also call the automaton a

deterministic finite-state automaton (DFSA).

DefineMK to be the set of all finite state automata with |Q| ≤ K. Denote the ex-

ante expected payoff from the automaton M to be V (M). Given the memory constraint

K, an optimal automaton is one which solves the maximisation problem

max
M∈MK

V (M). (4)

Note that the optimization is constrained by the upper bound K on the number of

memory states of the automaton, M . This maximization problem consists of two parts:

first, a choice of the number of memory states below K and the action rule for each

memory state; second, taking the number of memory states as given, optimization over

transition probabilities. The first step is essentially a discrete problem while the second

optimizes over continuous variables.

2Kalai and Solan (2003) show that it is with no loss of generality to assume that the action rule is

deterministic.
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To solve this optimization problem, our strategy is to first characterize the opti-

mal transition rules for a given number of memory states. For this part we extend

the principle of multiself consistency proposed by Piccione and Rubinstein (1997) for

models of imperfect recall to our environment, a methodology borrowed from Wilson

(2014). While this principle is essentially based on the first-order conditions for opti-

mal transition probabilities, its main insight is that the optimal transition rules follow

a version of “sequential rationality” in the sense that for each memory state, there is a

corresponding posterior “belief” so that when the automaton lands at that state and

receives a signal, it is optimal to choose the next memory state to go to by comparing

the expected continuation payoffs according to that belief. Moreover, as will become

clear later, it is better to consider such beliefs as categories than a precise posterior,

and their updating rules are in general biased relative to the Bayesian benchmark.

The optimal number of memory states can then be found by comparing the optimal

expected payoffs for each number of memory states less than K. In the fixed-world

environment, the constraint K is always binding under the full support assumption,

i.e., ξx ∈ (0,∞) for all x (c.f. Wilson (2014) and Hu (2022)). In other words, the

unconstrained optimum is not implementable by any DFSA in the fixed-worlds envi-

ronment. In contrast, K may not be binding under changing worlds. In particular, in

the i.i.d. environment, only two memory states are needed to implement the uncon-

strained optimum. When K is binding, the main finding from the literature is that

randomization can be optimal (c.f. Hellman and Cover (1970) and Wilson (2014)) in

the fixed-world environment.

Now we move to the characterization of optimal transition rules, taking the number

of memory states as given, which we denote by K for now. We show that the opti-

mal transition rule maximizes the expected continuation value with respect to some

categories of beliefs, and we first define continuation payoffs and a notion of “beliefs.”

First note that once an automaton is fixed, the payoffs are completely determined

by the evolution of the pair (θ, q) over time since actions only depend on q ∈ Q. This

pair evolves according to a Markov process:

P(θ′, q′|θ, q) =
∑
x∈X

νθθ′µ
θ′

x σ(q, x)(q′), (5)

where νθθ = ∆θ and νθθ′ = 1 − ∆θ if θ′ 6= θ. The expected payoff from M , V (M),
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can be decomposed to be the sum of the expected payoff accumulated from the pairs

(q, θ) ∈ Q× {H,L}, that is,

V (M) =
∑
{f(q, θ)u[d(q), θ], (q, θ) ∈ Q× {H,L}} ,

where

f(q, θ) =
∞∑
t=0

η(1− η)t
∑{

P0(θ0)
t−1∏
j=0

ν
θj
θj+1

µθj+1
xj+1

σ(qj, xj+1)(qj+1) : (qt, θt) = (q, θ)

}
,

(6)

and where the summation is over all (θj, qj, xj+1) ∈ {H,L} × Q × X with q0 = qo,

j = 0, ..., t − 1. Since the expressions f(q, θ) does not depend on the decision rule d,

for d to be optimal, it must be the case that d(q) solves

max
a∈A

∑
θ=H,L

f(q, θ)u(a, θ),

that is, d(q) needs to maximize the expected utility according to the “belief”

p(q) =
f(q,H)

f(q,H) + f(q, L)
.

Moreover, f(q, θ) satisfies the following recursive equations:

f(q, θ) = ηP0(θ)1q=qo + (1− η)
∑

θ′,q′∈Q,x∈X

σ(q′, x)(q)νθ
′

θ µ
θ
xf(q′, θ′) (7)

=
∑

θ′,q′∈Q,x∈X

[ηP0(θ)1q=qo + (1− η)νθ
′

θ µ
θ
xσ(q′, x)(q)]f(q′, θ′).

That is, f(q, θ) is the stationary distribution under the transition probability from

(q, θ) to (q′, θ′) given by

T (q′, θ′|q, θ) =
∑
x∈X

[ηP0(θ)1q′=qo + (1− η)νθθ′µ
θ′

x σ(q, x)(q′)]. (8)

The transition (8) would collapse to (5) if η = 0. For η > 0, the difference is that

(8) features a return to the initial memory state qo and initial distribution P0 with

probability η every period. Intuitively, this discrepancy captures the constraints arising

from the limited number of memory states. When arriving at the memory state q, the
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DM cannot distinguish whether she is there right at the beginning or having been

through a few other memory states before arriving there.

The principle of multiself consistency developed by Wilson (2014) extends the above

logic not only to the decision rule d but also to the transition rule σ. For this purpose

we need to take signals into account as well and we may then define “beliefs” at memory

state q as follows:

p(q)

1− p(q)
=
f(q,H)

f(q, L)
,

p(q, x)

1− p(q, x)
=
ξ[p(q)]∆H + (1−∆L)

ξ[p(q)](1−∆H) + ∆L
× ξ(x). (9)

According to (9), the belief p(q) is determined by f(q,H) and f(q, L), and p(q, x) is

obtained from that belief according to (2) using p(q) as the initial posterior.

To characterize an optimal SFSA, we use Vq(θ) to denote the continuation value

at memory state q conditional on the state of nature being θ. Two memory states are

called equivalent if they share the same transition rules to any other states or their

equivalents, and have the same specified action.

Theorem 2.1. Consider the changing world environment under assumption (1). Let

M be an optimal finite automaton that solves (4) for a given K without equivalent

states. We rank the memory states in M according to

p(q1) ≤ p(q2) ≤ · · · ≤ p(qK),

with the convention that if p(qi) = p(qi+1) then Vqi(H) ≤ Vqi+1
(H). Let ∆V θ

i,j =

Vqi(θ)− Vqj(θ).

1. ∆V H
i,j < 0 and ∆V L

i,j > 0 for all i < j, and ∆V H
j,i /∆V

L
i,j ≥ ∆V H

k,j/∆V
L
j,k for all

i < j < k.

2. Define ξ̄i = ∆V L
i,i+1/∆V

H
i+1,i, i = 1, ..., K − 1. Then, in M ,

(a) for each qi,

ξ[p(qi)] ∈ [ξ̄i−1, ξ̄i]; (10)

(b) for each qi, qj and x, σ(qi, x)(qj) > 0 only if

ξ[p(qi, x)] ∈ [ξ̄j−1, ξ̄j], (11)

where ξ̄0 = 0 and ξ̄K =∞;
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(c) d(qi) = aH only if ξ[p(qi)] ≥ ξ∗ and d(qi) = aL only if ξ[p(qi)] ≤ ξ∗.

Theorem 2.1 generalizes the characterization result in Wilson (2014) to changing

worlds, based on the principle of modified multi-self consistency proposed by Piccione

and Rubinstein (1997). See Online Appendix for formal details. As mentioned earlier,

it requires the decision rule be optimal according to the beliefs p(qi), as d(qi) = aH

only if ξ[p(qi)] ≥ ξ∗ and d(qi) = aL only if ξ[p(qi)] ≤ ξ∗. Moreover, the transitions are

optimal w.r.t. such beliefs and the continuation values as well. Accordingly, Theorem

2.1 identifies a partition of beliefs based on the continuation values, {ξ̄i : i = 0, ..., K},
and, from the current memory state qi and signal x, it is optimal to transit to state qj

only if p(qi, x), the posterior updated from p(qi) and signal x according to Bayes rule,

lies within [ξ̄j−1, ξ̄j].

In summary, the optimal SFSA shares the same structure as the unconstrained

optimal rule, but uses p(q) as the posterior. In this sense the DM who employs the

optimal SFSA satisfies a notion of “sequential rationality.” However, there is a key

difference between the optimal SFSA and the unconstrained optimal rule—the beliefs

p(q) are not derived from Bayes rule. Instead, since p(q)’s are derived from the transi-

tion matrix (8), which is perturbed by η, these beliefs are biased. Finally, while p(qi)

can be regarded as the “representative belief,” it is better to consider categories of

beliefs represented by [ξ̄i−1, ξ̄i] for the memory state qi, as it is optimal to transit to qi

whenever the “beliefs” land inside that range.

The modified multi-self consistency is based on arguments regarding local optimal-

ity, and hence Theorem 2.1 only provides necessary conditions for local optimality.

However, it is still powerful for two reasons. First, it significantly reduces the number

of possible randomizations, as Theorem 2.1 2 (b) implies that randomization can hap-

pen only if the posterior lies on the boundary. Wilson (2014) in fact used this fact to

characterize optimal randomization for η close to zero in fixed-worlds environments.

Our technique, however, focuses on a second merit. Again, by Theorem 2.1 2 (b), an

optimal transition must be deterministic if ξ[p(qi), x] ∈ (ξ̄j−1, ξ̄j), that is, if the poste-

rior lies within the interior of the boundaries. This turns out to be a crucial observation

for us to identify some optimal heuristics, to which we turn next.
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Figure 1: The availability heuristic: Ma
2

3 Recency bias

Here we consider situations that give rise to a simple heuristic rule that is constrained

efficient, which exhibits recency bias when the constraint is binding. The recency

bias means that the DM only uses the most recent signals to determine her action,

disregarding her past observations. In contrast, without frictions the Bayesian inference

would take the full history into account and past signals would be relevant for the

current action. This bias is related to availability heuristics mentioned in Tversky

and Kahneman (1974). These results would also illustrate the key differences between

changing and fixed worlds. For this purpose, we focus on the case where X = {h, `}
with µHh = µ = µL` , that is, h-signal and `-signal are symmetric.

Now, in this environment, this simple heuristic that only utilizes the most recent

signals can be represented by the DFSA in Figure 1, which we call Ma
2 (the superscript

“a” for availability heuristics and the subscript for the number of memory states), and

in which d(qH) = aH and d(qL) = aL. Thus, the decision-maker takes action aH when

called upon if the most recent signal is h, and she takes action aL when called upon if

the most recent signal is `. We begin with a simple observation.

Lemma 3.1. Suppose that ∆H + ∆L ∈ [1, 2) and that µHh = µ = µL` . There exists

µ∗ < 1 such that for all µ ∈ [µ∗, 1], Ma
2 implements the unconstrained optimum with

qo = qH if ξ(p0) ≥ ξ∗ and qo = qL if ξ(p0) < ξ∗.

For the extreme case where µ = 1, the logic behind Lemma 3.1 is straightforward:

when the two signals fully reveal the true states of the world, past observations are not

relevant and only the current signal counts, even for the unconstrained decision-maker.

Moreover, Ma
2 is the unique DFSA that implements the unconstrained optimum (up to

equivalent memory states), because the states of the world are changing (∆H+∆L < 2).

14



H L

H ∆H = ν 1−∆H = 1− ν
L 1−∆L = 1− ν ∆L = ν

h `

H µHh = µ µH` = 1− µ
L µH` = 1− µ µL` = µ

Table 2: Left: transition matrix; right: signal distributions

Now, Lemma 3.1 gives a range of signal strengths under which Ma
2 is the uncon-

strained optimal rule. When ∆H + ∆L < 2, as we have seen in Lemma 2.1, the fixed

points p̄h and p̄` are within (0, 1) for µ < 1. Assuming that the prior lies within the

two fixed-points, (p̄`, p̄h), the threshold µ∗ is the minimum µ for the following two con-

ditions to hold. First, from ξ(p̄h) as (the likelihood ratio of) the current posterior, one

`-signal is sufficient to bring (the likelihood ratio of) the updated posterior below ξ∗,

and second, from ξ(p̄`) as (the likelihood ratio of) the current posterior, one h-signal

is sufficient to bring (the likelihood ratio of) the updated posterior above ξ∗. As a

result, it is always optimal to take aH (aL) after a single h (`)-signal. In contrast, in

the fixed-worlds environment the fixed points are the extreme points zero and one, and

hence for any µ < 1, this condition cannot be fulfilled. Indeed, in the fixed-worlds

environment, Ma
2 implements the unconstrained optimum only when µ = 1 exactly,

and µ∗ converges to one as ∆H + ∆L converges to 2, i.e., the fixed-worlds environment.

Now, for µ < µ∗, Ma
2 does not implement the unconstrained optimum. Assuming

that p0 ∈ (p̄`, p̄h) at µ∗, then for slightly lower µ’s the constraint becomes binding

for any given K. To solve for the constrained optimal rule, we consider only the

symmetric case here: ∆H = ν = ∆L with ν ∈ (0.5, 1), as illustrated in Table 2. This

simplification allows us to rule out tedious discussions of various cases that may arise

due to asymmetry. In this case, ν measures the persistence of the state of the world,

with ν = 1 being the fixed-worlds environment and ν = 0.5 the i.i.d. case. Moreover,

the stationary distribution has ξ̄ = 1.

Given the symmetry, we assume without loss of generality that ξ∗ > 1. In this case,

µ∗ is determined by γ(p̄`, ξh) = ξ∗ provided that ξ(p0) ∈ [1, ξ∗]. The following theorem

shows that the unconstrained optimum requires unbounded number of memory states

for µ below µ∗, but the constrained optimality is obtained by Ma
2 .

Theorem 3.1. Suppose that ∆H = ν = ∆L ∈ (0.5, 1) and that ξ(p0) ∈ [1, ξ∗]. Let
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K ≥ 2 be given.

1. There exists µK < µ∗ such that the unconstrained optimum is not implementable

by DFSA with |Q| ≤ K for all µ ∈ (µK , µ
∗).

2. There exists µ̃ ∈ [µK , µ
∗) such that for all µ ≥ µ̃, Ma

2 with qo = qL is the optimal

SFSA among MK.

According to Theorem 3.1 (1), as soon as µ moves below µ∗, the unconstrained

optimum requires an unbounded number of memory states. The reason is the following.

For µ slightly below µ∗, one h-signal takes the posterior slightly below ξ∗ from ξ(p̄`) and

another h-signal will take it over. Now, consider the number of `-signals needed from

p̄h, denoted by N , so that the resulting posterior, denoted by pN , has the following

property. From ξ(pN), it takes two h-signals to cross ξ∗ but from ξ(pN−1) only one

h-signal is needed. See Figure 2 for a graphical illustration. Since at µ = µ∗ we need

pN = p̄`, which cannot be satisfied unless N approaches infinity according to Lemma

2.1, for µ slightly below µ∗ we need an arbitrarily large N . We can then choose µK to

ensure that such N > K. This implies that the unconstrained optimal decision rule

requires at least K+ 1 memory states to implement, since following any two posteriors

ξ(pn) and ξ(pn
′
) with n < n′, we can find a sequence of signals (N − n′ ` signals

followed by an h-signal) that lead to different actions under the unconstrained optimal

rule, they must correspond to different memory states.

A formal argument uses the Myhill-Nerode Theorem to explicate this logic to prove

the result.3 Note that this only works for a range, as for µ close to half and hence as

the signals become almost uninformative, the fixed-points converge to half as well and

in that case the unconstrained optimal rule only sticks to aL.

Theorem 3.1 implies a discontinuity in the number of memory states necessary

to implement the unconstrained optimum. For µ ≥ µ∗, only two memory states are

required and Ma
2 implements the unconstrained optimum, but for µ < µ∗ and slightly

3This theorem characterizes deterministic finite-state automata, a characterization based on the

following observation: if two distinct partial histories of signals, x and y, lead the automaton to the

same memory state, q, then xz and yz will also result in the process reaching the same memory state,

q′, which might not be the same as q. This observation allows for a neat characterization of number

of states needed to implement a decision rule, based on the categories of partial histories it induces.
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Figure 2: Determination of state-complexity for µ < µ∗

below, an unbounded number is required. Theorem 3.1 (2), however, shows that Ma
2

is constrained optimal for a range of µ’s below µ∗, and that Ma
2 is the optimal SFSA

under an arbitrary constraint K. In other words, for µ ≥ µ̃, bigger finite automata

(deterministic or stochastic) do not perform better than Ma
2 .

Note that, nevertheless, the optimal payoff (constrained or unconstrained) is con-

tinuous as µ moves below µ∗, but this bounded-rationality approach emphasizes the

optimal decision procedure and reveals discontinuity in that procedure. Notice also

that the availability heuristic can also be implemented by a DM with bounded recall

and with memory capacity of one. What we have shown here is that a very simple rule

is indeed optimal, even if other more complicated schemes are available to the DM,

including more complicated deterministic or stochastic transitions of memory states.

The proof of Theorem 3.1 (2) has three components. The first component shows

that Ma
2 uniquely implements the unconstrained optimum for all µ ≥ µ∗, up to equiv-

alent memory states. Note that µ∗ is defined by the property that, starting from ξ(p`),

a single h-signal takes the posterior likelihood ratio to ξ∗. Multiplicity is not possible

because with the prior in between the two fixed points, ξ(p`) is never reached with a

finite number of `-signals, so the posterior can never be at ξ∗, the indifference level for

the two actions (if the DM is called on to take one).

The second part of the proof demonstrates local optimality against other two-state

automata, with µ slightly lower than µ∗. This uses Theorem 2.1 (b): Since Ma
2 specifies

that it is strictly optimal to follow the required transition at µ = µ∗, continuity of

optimal value functions in µ ensures strict optimality close enough to µ∗.

Finally, to demonstrate that Ma
2 is optimal against larger automata, we consider

first those that implement very different transition and decision rules than Ma
2 , which
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are clearly sub-optimal. However, there could be automata with these rules being

very close to Ma
2 but with replica states. Replica states of qH and qL will have the

same actions but could transition to other replica states. But such transitions will

be optimal if they have the same continuation values as the original state, so such

automata cannot do strictly better. The beliefs in these replica states might, however,

differ (from Theorem 2.1) because the paths taken to get to them might involve more

or fewer transitions.

Intuitively, the different beliefs across different replicas of qH reflect the different

subsets of partial histories of signals that would lead to the original memory state qH .

Any of such partial histories will necessarily end with an h-signal, and we show that

such beliefs will lie strictly above ξ∗ for a range of µ’s below µ∗ based on the following

observation. At µ∗, any posterior resulting from any partial history that ends with h

will lie above ξ∗. Since K is finite, the process will always stay away from the fixed

points, and hence at µ∗ such belief will lie strictly above and we appeal to continuity to

show that it remains so for µ slightly below. The formal argument uses the contraction

mapping theorem.

In general, the threshold µ̃ from Theorem 3.1 (2) depends on K, in addition to

other parameters such as η and ν, and is not tractable. However, for K = 2, we are

able to fully characterize µ̃, and extend this result to the fixed-worlds environment

(ν = 1) and restore continuity.

Proposition 3.1. Suppose that ∆H = ν = ∆L ∈ (0.5, 1] and that ξ(p0) = 1 < ξ∗. Let

K = 2. The threshold µ̃(ν) above which Ma
2 with qo = qL is optimal among M2 is

continuous and strictly increases with ν for all ν ∈ (0.5, 1]. Moreover,

µ∗(0.5) = µ̃(0.5) < µ̃(1) < 1.

Note that by Lemma 3.1, Ma
2 implements the unconstrained optimal rule for µ ∈

[µ∗, 1] and hence Proposition 3.1 has a bite only for µ ∈ [µ̃, µ∗). However, as mentioned

earlier, µ∗ converges to unity as ν approaches unity, the fixed-worlds environment, a

result follows from continuity of the unconstrained payoffs. Proposition 3.1 also implies

that the threshold µ̃ is strictly below one even at ν = 1, and hence, even under the

fixed world, there is a range of µ’s for which Ma
2 is constrained optimal. In the other
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Figure 3: Red area: Ma
2 unconstrained optimal; green area: Ma

2 constrained optimal

under K = 2

extreme, µ∗ = µ̃ when ν = 0.5, the i.i.d. environment. Thus, since both µ∗ and

µ̃ strictly increase as ν increases from ν = 0.5 and they begin at the same point at

ν = 0.5, but µ̃ ends at a lower point as ν approaches the unity, the range where Ma
2 is

constrained optimal under K = 2 increases as ν increases, as depicted in Figure 3. In

other words, while it is true that the availability heuristic is more likely to be optimal

(unconstrained or constrained) when the information structure is closer to i.i.d., it is

more likely to be constrained optimal, that is, to be optimal as a heuristic or a simplified

rule when the information structure is closer to the fixed-worlds environment.

The less-is-more result also shows that our results are robust to introduction of

costs of adding memory states. Specifically, consider a model where each additional

memory state is costly and hence the optimal K is endogenous. To do so, suppose that

it costs the DM cK to have K memory states. We have the following result.

Proposition 3.2. Suppose that ∆H = ν = ∆L ∈ (0, 5, 1) and that ξ(p0) ∈ [1, ξ∗].

Suppose that it costs cK to have K memory states. For each c sufficiently small, there

exists µ̃ < µ∗ such that for all µ ≥ µ̃, optimal K = 2 and Ma
2 is the optimal SFSA.

According to Proposition 3.2, for any cost sufficiently small but positive, there is

a range of µ’s below µ∗ under which the optimal choice is K = 2. In contrast, in the

same range of parameters, for exactly zero cost the optimal K is unbounded. Again,

this reveals the stark discontinuity in optimal procedure, and the constrained optimal

rule is cognitively “cheap” but performs relatively well. This result then gives a precise
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formulation of the arguments for simple but effective heuristics used in Gigerenzer and

Todd (1999).

Now we briefly discuss the role of the assumption that the information structure

is given by Table 2. First the assumption that ∆H = ∆L is not important, and all

our results will hold qualitatively as long as ∆H + ∆L ∈ (1, 2) and ξ(p0) is close to

ξ̄. This last assumption that ξ(p0) is close to ξ̄, however, is indispensable for Ma
2 to

be optimal to avoid the possibility that the posteriors lie outside the fixed-points, ξ̄h

and ξ̄`. Regarding the symmetry assumption that µHh = µ = µL` , both Theorem 3.1

and Proposition 3.1 will hold qualitatively if µHh 6= µL` but are not too far from one

another. This result follows almost immediately from Theorem 2.1. Indeed, since the

logic of proof relies on the strict optimality of transition, it holds by continuity for small

changes in the parameters, including µHh . For the same reason, if we would introduce

a third signal which is small in the sense that its likelihood ratio is close to unity,

then it will be optimal to ignore it in the sense that there is no transition after seeing

the small signal while the constrained optimal rule would follow Ma
2 for the two more

informative signals for ν close to one under Table 2. However, these results rely on µHh

and µL` being close to one another, and in the next section we discuss the other case

where they are rather asymmetric.

4 Ignoring regime change

Up to now we have focused on the symmetric or a nearly symmetric situation where

µHh and µL` are close. Now we consider the asymmetric case where the strengths of the

two signals are very different. In particular, we consider the benchmark case where

µHh = 1 but keep µL` = µ ∈ (0, 1), and where ∆H = 1 > ν = ∆L, the transition matrix

according to the Shiryaev (1978) model of regime change. In this case, regardless of

the value of ν, the `-signal fully reveals that the current state of the world is L, but the

h-signal increases the posterior on H. Moreover, ∆H = 1 means that the state H is an

absorbing state. Hence, when ν < 1, even when the fully revealing signal ` appears,

there can still be regime change and learning is never dispensable. See also Table 3 for

a summary of the transition matrix and signal distributions.

Here we focus on the case where ξ(p0) ≥ ξ∗, which allows us to demonstrate the
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H L

H ∆H = 1 1−∆H = 0

L 1−∆L = 1− ν ∆L = ν

h `

H µHh = 1 µH` = 0

L µH` = 1− µ µL` = µ

Table 3: Left: transition matrix; right: signal distributions

main insight that holds for the other case as well. We will comment on the other case

where ξ(p0) < ξ∗ toward the end of the section. Back to the case where ξ(p0) ≥ ξ∗, there

are two polar situations where the unconstrained optimum requires only two memory

states. The first is the fixed-worlds environment, where ν = 1, and the unconstrained

optimum can be implemented by M b
2 depicted in the left panel in Figure 4 with qo = qH

and d(qH) = aH and d(qL) = aL. In this case, an h-signal continues to increase the

posterior on H and taking aH is optimal before any `-signal, but one `-signal reveals

that the state of nature is L and remains there forever. The other polar situation occurs

with ν close to zero and regime change is very likely from state L, and Ma
2 implements

the unconstrained optimum. Intuitively, for ν small, an h-signal is sufficient to bring

the posterior above ξ∗, regardless of the current posterior. The condition on ν for this

to happen is given by
ν

1− ν
ξ∗ ≤ 1

1− µ
. (12)

If K = 2, the constraint is binding for ν below one and any value above the maximum

value that makes (12) hold, a threshold denoted by ν̄. That is, for ν ∈ (ν̄, 1), any DFSA

with two memory states cannot implement the unconstrained optimum; in fact, the

number of memory states needed converges to infinity as ν approaches one. Indeed, for

ν close to one, after one `-signal it would require a large number of h-signals to bring

the posterior to reach ξ∗ again, a number that converges to infinity as ν approaches

one. We have the following theorem regarding the constrained optimal rule when ν is

in between these two polar situations.

Theorem 4.1. Suppose that ∆H = 1 and ∆L = ν ∈ [0, 1] and that µHh = 1 > µ = µL` .

Suppose that ξ(p0) ≥ ξ∗.

1. For any K ≥ 2 given, there exists ν̃K < 1 such that for all ν ≥ ν̃K, the optimal

SFSA is M b
2 with qo = qH .
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Figure 4: Left: M b
2 ; Right: Ma

2 (α)

2. Let K = 2. For ν ∈ (ν̄, ν̃2), the optimal SFSA is Ma
2 (α)with qo = qH and with

α ∈ (0, 1).

According to Theorem 4.1 (1), M b
2 is the constrained optimal rule for a range

of changing-worlds environments. As a result, even though there is still a positive

probability of regime change after receiving an `-signal, the DM behaves as if she

is fully convinced that the state of the world remains at L forever and ignores the

possibility of regime change, with her belief stuck at L. In contrast, an unconstrained

DM will continue to change her posterior after any number of `-signals. In fact, since

H is an absorbing state, the unconstrained DM’s posterior will eventually move to H

with full conviction almost surely, a stark contrast to the constrained optimal rule.

Intuitively, for ν close to one, the DM does not expect regime change to happen.

Once she receives an `-signal and is convinced of state L, h-signal is a very weak signal

for the regime change. Indeed, after an `-signal, it would require a large number of h-

signals to convince the unconstrained decision-maker that the state has really changed.

A constrained decision-maker, in contrast, faces scarcity in her cognitive resources and

might not have enough memory states in her automaton to make such an inference and

therefore ignores regime change. Moreover, any stochastic scheme the DM may employ

to respond to an h-signal at qL would in fact make belief at qL more concentrated at

state L and hence make the transition to qH even less attractive. To see this, under

M b
2 , both signals would leave the automaton at qL with the associated belief based

on a mixture of those signals. But a stochastic scheme would have the automaton to

leave qL with some probability at h-signal and hence the corresponding belief would be

based on fewer h-signals, leaving it with a higher concentration of `-signals and hence

a higher probability on state L. As a result, the constrained optimal rule ignores any
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h-signal all together after an `-signal, even though they are informative about regime

change. The same logic would hold as long as the `-signal is sufficiently informative

about state L, that is, as long as µHh is sufficiently close to one.

Theorem 4.1 (1) also illustrates a less-is-more result, and, for all ν ∈ [ν̃K , 1], M b
2 is

better than other SFSA with |Q| ≤ K, either with more memory states or with ran-

domization or both. Thus, a simple decision rule outperforms more complicated ones.

This shows that ignoring regime change is a powerful heuristic when the probability

of regime change is small, and captures the casual observation that people tend to

ignore events with small probability, even though those events imply significant change

in stakes. Moreover, one can introduce cost of additional memory states and for an

appropriate range of costs the optimal K would be two.

As in Theorem 3.1 (2), we appeal to Theorem 2.1 to prove Theorem 4.1 (1), and,

again, the main difficulty is due to the large replica finite automata of M b
2 . As there, it

is the beliefs that may differ across the replica memory states. However, for any replica

of qH , to reach it the partial history contains only h-signals, and hence, the resulting

belief will float above the threshold. The belief for replicas of qL is more complicated,

as it may involve many h- and `-signals. If ν = 1, one `-signal is sufficient to send

the belief to zero. For ν slightly below, however, a slight complication arises as some

replicas may have very small probability to be transitioned into. Nevertheless, a simple

limit argument shows that the beliefs are still arbitrarily small if ν is close to one.

For lower ν’s, according to Theorem 4.1 (2), under K = 2, the memory constraint

is binding and the optimal SFSA is Ma
2 (α) as depicted in the right panel of Figure 4

with qo = qH and d(qH) = aH and d(qL) = aL. Note that Ma
2 (α) can be regarded as

a convex combination between Ma
2 and M b

2 , and Theorem 4.1 shows that the optimal

SFSA moves from Ma
2 gradually to M b

2 as ν increases from zero to one.

We also obtain some comparative statics with respect to ν and η. By (12), the

threshold ν̄ only depends on µ and ξ∗. In contrast, the threshold ν̃K depends on K

and η as well. Note that, however, neither threshold depends on p0. When K = 2 we

can find a closed-form solution for ν̃K , and we depict the range of different constrained

optimal rules in Figure 5. As depicted there, ν̃2 converges to one as η approaches

zero, and ν̃2 converges to ν̄ as η approaches one. Thus, the red area under which

M b
2 is optimal, where ν ≥ ν̃2, expands as η increases, while the area under which

23



ν

η
0

1

1

ν̄ = 1
ξ∗(1−µ)+1

ν̃2(η)

Figure 5: Red area: M b
2 constrained optimal under K = 2; blue area: Ma

2 uncon-

strained optimal; white area: Ma
2 (α) optimal with α ∈ (0, 1)

randomization is optimal with α ∈ (0, 1) in Ma
2 (α), shrinks. That is, the heuristic

of ignoring regime change is more relevant when η is away from zero, and hence such

heuristic thinking would be more important for impatient DM’s but stochastic schemes

would be more important for patient DM’s.

Finally, we briefly discuss the case ξ(p0) < ξ∗, while formal details can be found in

the Online Appendix. As in the previous case, if ν is sufficiently small and satisfies

(12), Ma
2 can implement the unconstrained optimum, but with qo = qL. In contrast to

the previous case, at the other extreme where ν = 1, while the unconstrained optimum

is still implementable by finitely many memory states, the required number of memory

states depends on the informativeness of the signals as well as the distance between

ξ(p0) and ξ∗. More precisely, let

N = d ln(ξ∗)− ln[ξ(p0)]

ln(ξh)
e. (13)

If ν = 1, the unconstrained optimum can be implemented by a DFSA analogous to

M b
2 but it needs N additional memory states to account for the fact that one needs N

h-signals to cross ξ∗ from ξ(p0). Thus, the unconstrained optimum is implementable if

and only if K ≥ N+2, and Hu (2022) shows that if K < N+2, randomization is needed

for those transitional memory states under the fixed world. Under changing worlds,

we show that there is a memory state analogous to qL in M b
2 , which is the memory

state that the (constrained) automaton goes to whenever an `-signal is received and

is self-absorbing. We then obtain a result analogous to Theorem 4.1 for ξ(p0) < ξ∗
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as well: for any given K, for a range of ν’s below one, the constrained optimal finite

automaton ignores regime change in the sense that once an `-signal is received, the

automaton enters a memory state that is self-absorbing and takes action aL.

5 Conclusion

In this paper we studied learning with capacity-constrained information processing,

when the unknown state of the world itself evolves over time . By considering two broad

classes of information structures, we illustrated new effects due to limited memory.

The first is a recency bias according to which the decision-maker only uses the latest

signal to determine her action, disregarding useful information from the past. In the

changing-world environment with two signals that are similar in strength, a simple two-

state finite automaton that employs the availability heuristic outperforms larger ones

and is the constrained optimal rule. In a model of regime change with a breakthrough

signal, however, the constrained optimal rule simply ignores the possibility of regime

change but is fully convinced of the strong signal in the past, disregarding the incoming

informative signals indicating otherwise. We also endogenized the optimal memory

constraints by introducing costs on memory states, and have demonstrated that these

biases are in fact optimal responses even to a small cost of adding additional memory

states.
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6 Appendix: Proofs

Proof of Lemma 2.1

Let x ∈ X be given. Then, p̄x = p solves

p

1− p
= ξx ×

∆Hp+ (1−∆H)(1− p)
(1−∆L)p+ ∆L(1− p)

.

This then gives a quadratic equation of p:

(1−∆L)p2 + (∆L − ξx∆H)p(1− p)− ξx(1−∆H)(1− p)2 = 0.

Assuming that ∆H + ∆L ∈ (1, 2), when p = 0, the left-side is −ξx(1 − ∆H) < 0,

and when p = 1, it is (1 − ∆L) > 0. Since quadratic equations can have at most

two zeros, this implies that there exists a unique zero within (0, 1). In contrast, when

∆H + ∆L = 2, the solutions are p = 0 and p = 1. When ∆H + ∆L = 1,

p̄x
1− p̄x

= ξx ×
∆H

1−∆L
. (14)

Finally, γ(p; ξ) increases with ξ. Hence, p̄x increases with ξx as well. �

Proof of Lemma 3.1

Let ∆H + ∆L ∈ [1, 2) be given. For each µ ∈ (0.5, 1), define

gh(µ) = γ(p̄`, ξh) and g`(µ) = γ(p̄h, ξ`).

Note that both p̄h and p̄` are functions of µ, since ξh = µ/(1− µ) and ξ` = (1− µ)/µ.

It is straightforward to verify that

lim
µ→1

gh(µ) =∞ = lim
µ→1

ξ(p̄h) and lim
µ→1

g`(µ) = 0 = lim
µ→1

ξ(p̄`).

By continuity, then, there exists µ∗ such that for all µ ∈ [µ∗, 1),

gh(µ) ≥ ξ∗, g`(µ) ≤ ξ∗, ξ(p̄h) ≥ ξ(p0), and ξ(p̄`) ≤ ξ(p0). (15)

Now, we show that Ma
2 implements the unconstrained optimum with qo = qH if

ξ(p0) ≥ ξ∗, a case we consider here; the other case is similar by symmetry. It follows

from (15) that (a) the posterior p ∈ (p̄`, p̄h) after any sequence of signals: this follows

from p0 ∈ (p̄`, p̄h) and Lemma 2.1; (b) for all p ∈ (p̄`, p̄h), γ(p, ξh) ≥ ξ∗ and γ(p, ξ`) ≥ ξ∗,

and hence it is optimal to take action aH after seeing an h-signal and to take action

aL after seeing an `-signal, regardless of the history.
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Proof of Theorem 3.1

Part (1) We first compute

ξ(p̄h) =
ν(ξh − 1) +

√
ν2(ξh − 1)2 + 4(1− ν)2ξh
2(1− ν)

,

γ(p̄h, ξ`) =
ν(ξh − 1) +

√
ν2(ξh − 1)2 + 4(1− ν)2ξh
2(1− ν)ξ2h

,

and by symmetry, ξ(p̄`) = 1/ξ(p̄h) and γ(p̄`, ξh) = 1/γ(p̄h, ξ`). It is straightforward to

verify that both p̄h and γ(p̄`, ξh) strictly increase with µ, and γ(p̄`, ξh) = 1 = ξ(p̄h) < ξ∗

when µ = 0.5. Thus, there exists a unique µ∗ > 0.5 such that γ(p̄`, ξh) = ξ∗ < ξ(p̄h).

Now, for each µ ∈ (0.5, µ∗), define N(µ) as follows. First, for any sequence of

signals x ∈ {h, `}∗, extend γ(p,x) to denote the posterior after seeing x from p as the

prior. Now, let N(µ) be the smallest N such that

γ(p̄h, `
N ◦ h) < ξ∗. (16)

Thus, by definition, γ(p̄h, `
n ◦ h) > ξ∗ for all n < N(µ). Now we show that the

unconstrained optimal payoff can not be achieved by any DFSA with |Q| ≤ N(µ). To

do so, we construct a sequence of partial histories, xi, i = 1, ..., N(µ) that each must

belong to a distinct cell in the Nerode-Myhill Theorem. Now, let M be sufficiently

large so that γ(p0, h
M) is sufficiently close to p̄h and hence N(µ) is determined in the

same way as (16) if we begin with γ(p0, h
M) instead of p̄h. Now, let

xi = hM ◦ `i, i = 0, 1, 2, ...., N − 1. (17)

Then, for any i < j, let yi,j = `N−j ◦ h. Then,

γ(p0,x
i ◦ yi,j) > ξ∗ but γ(p0,x

j ◦ yi,j) < ξ∗. (18)

This implies that xi and xj cannot be in the same cell and each requires a distinct

memory state.

Finally, N(µ) converges to infinity as µ converges to µ∗ by Lemma 2.1 and is weakly

increasing in µ. As a result, for any given K, there exists a threshold µK so that for

all µ ∈ (µK , µ
∗), N(µ) > K.
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Part (2) By Lemma 3.1, Ma
2 implements the unconstrained optimum at µ = µ∗. It

is also the unique one up to equivalent memory states: the only possible indifference

occurs at ξ∗, but, at µ∗, the posterior never reaches ξ∗; thus, for any K, V (Ma
2 ) >

V (M ′) for other SFSA M ′ ∈ MK whose randomization probabilities are ε away from

that in Ma
2 and this inequality holds for a range of µ’s below 1. Now we demonstrate

local optimality of Ma
2 for a range of µ’s below µ∗ by appealing to Theorem 2.1. A key

feature of Ma
2 is that

VqH (H)− VqL(H) = ηuH ; VqL(L)− VqH (L) = ηuL. (19)

This implies that

ξ̄ = uL/uH = ξ∗

is the threshold below which qL is optimal and above which qH is optimal to transit to.

We need to handle equivalent states. Consider the case where ξ(p0) < ξ∗; the

other case is similar by symmetry. Fix some K ′ ≤ K, and consider a SFSA M with

K ′ = I + J memory states that is a replica of Ma
2 . We show that there is no local

deviations that can do better than Ma
2 from M . Note that since it is equivalent to Ma

2 ,

for any memory state equivalent to qθ, its continuation value is still Vqθ(H) and Vqθ(L)

as given in Ma
2 and hence satisfies (19) above, for both θ = H,L. Let equivalent states

of qH be denoted by q1H , ..., q
I
H , and qL be denoted by q1L, ..., q

J
L, with

σ(qiθ, h)(qjH) = αθij, σ(qiθ, `)(q
j
L) = βθij. (20)

Then, we have

f(qjH , H) =
∑
i=1,..,I

[f(qiH , H)νHH + f(qiH , L)νLH ]αHij(1− η)µ

+
∑

i=1,...,J

[f(qiL, H)νHH + f(qiL, L)νLH ]αLij(1− η)µ,

f(qjH , L) =
∑
i=1,..,I

[f(qiH , H)νHL + f(qiH , L)νLL ]αHij(1− η)(1− µ)

+
∑

i=1,...,J

[f(qiL, H)νHL + f(qiL, L)νLL ]αLij(1− η)(1− µ),
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f(qjL, H) = ηp0g(qjL) +
∑
i=1,..,I

[f(qiH , H)νHH + f(qiH , L)νLH ]βHij(1− η)(1− µ)

+
∑

i=1,...,J

[f(qiL, H)νHH + f(qiL, L)νLH ]βLij(1− η)(1− µ),

f(qjL, L) = η(1− p0)g(qjL) +
∑
i=1,..,I

[f(qiH , H)νHL + f(qiH , L)νLL ]βHij(1− η)µ

+
∑

i=1,...,J

[f(qiL, H)νHL + f(qiL, L)νLL ]βLij(1− η)µ.

We claim that

ξ̄` <
f(qjL, H)

f(qjL, L)
< ξ(p0) ≤ ξ∗ <

f(qiH , H)

f(qiH , L)
< ξ̄h for all i = 1, .., I, and j = 1, .., J. (21)

To show this, first note that {f(q,H), f(q, L)}q∈Q are the stationary distribution of a

finite Markov chain and hence it is the fixed point of the transition mapping, which is

a contraction (Stokey and Lucas, 1989, Lemma 11.3 and Theorem 11.4). So we only

need to show that the inequalities in (21) are preserved by the transition, assuming

that the input distribution satisfies it with weak inequalities.

Consider the first set of inequality in (21). We show that for each {f(q,H), f(q, L)}q∈Q
satisfying (21) with weak inequalities,

ξ∗ ≤ [f(q,H)νHH + f(q, L)νLH ]

[f(q,H)νHL + f(q, L)νLL ]

µ

1− µ
≤ ξ̄h.

Moreover, the first inequality is strict for q = qiH and the second is strict for q = qiL.

Note that the middle term is equal to γ[p(q), ξh] with p(q)/[1−p(q)] = f(q,H)/f(q, L).

Now, since at µ, γ(p̄`, ξh) ≥ ξ∗, the first inequality follows from (21) which implies that

p(q) ∈ [p̄`, p̄h]. When q = qiH , the inequality is strict as (21) implies that p(q)/[1 −
p(q)] > ξ∗. The second inequality follow from the fact that p(q) ≤ p̄h, and, when q = qiL,

the inequality is strict as p(qiL) < p̄h. The result then follows for f(qjH , H)/f(qjH , L)

immediately as the new f(qjH , H)/f(qjH , L) is in between the ratios given by the middle

term in (21).

Now we turn to qjL. We show that for each {f(q,H), f(q, L)}q∈Q satisfying (21)

with weak inequalities,

ξ̄` ≤
[f(q,H)νHH + f(q, L)νLH ]

[f(q,H)νHL + f(q, L)νLL ]

1− µ
µ
≤ ξ(p0).
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Moreover, the first inequality is strict for q = qiH and the second is strict for q =

qiL. Again, note that the middle term is equal to γ[p(q), ξ`] with p(q)/[1 − p(q)] =

f(q,H)/f(q, L), and the argument follows a similar reasoning to above. �

Proof of Proposition 3.1

Since ξ(p0) = 1 = ξ̄, it is straightforward to verify that

fH =
ηp0 + (1− η)(1− ν)

1− (1− η)(2ν − 1)
= 0.5 and fL =

η(1− p0) + (1− η)(1− ν)

1− (1− η)(2ν − 1)
= 0.5,

where f θ = f(qH , θ) + f(qL, θ) in Ma
2 . This then implies that

f(qL, H) = ηp0 + 0.5(1− η)(1− µ) = 0.5[η + (1− η)(1− µ)];

f(qL, L) = η(1− p0) + (1− η)0.5µ = 0.5[η + (1− η)µ];

f(qH , H) = 0.5µ(1− η);

f(qH , L) = 0.5(1− µ)(1− η).

To ensure local optimality, we need to check

ξ[p(qH)] =
f(qH , H)

f(qH , L)
> ξ∗, ξ[p(qH , `)] = ξ[p(qH)]ξ` < ξ∗; (22)

ξ[p(qL)] =
f(qL, H)

f(qL, L)
< ξ∗, ξ[p(qL, h)] = ξ[p(qL)]ξh > ξ∗. (23)

The first inequality in (22) then becomes

ξ[p(qh)] =
µ

1− µ
= ξh > ξ∗. (24)

For the second, we have

ξ[p(qH , `)] =
ξ[p(qH)]ν + (1− ν)

ξ[p(qH)](1− ν) + ν
× ξ`

=
ξhν + (1− ν)

ξh(1− ν) + ν
× ξ` =

ν + (1− ν)ξ`
ξh(1− ν) + ν

< 1 = ξ(p0) ≤ ξ∗,

where the first inequality follows from ξ` < 1 < ξh. This proves the second inequality

in (22). Now consider (23). First,

ξ[p(qL)] =
η + (1− η)(1− µ)

η + (1− η)µ
< 1 = ξ(p0),
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since µ > 1/2. Moreover,

ξ[p(qL, h)] =
[η + (1− η)(1− µ)]ν + [η + (1− η)µ](1− ν)

[η + (1− η)(1− µ)](1− ν) + [η + (1− η)µ]ν
× ξh

=
η + (1− η)[ν + (1− 2ν)µ]

η + (1− η)[(1− ν)− (1− 2ν)µ]

µ

1− µ
,

which decreases with ν and increases with µ. Thus, if we let µ̃(ν) to be the lowest µ

satisfying ξ[p(qL, h)] > ξ∗, Ma
2 is locally optimal for all µ ≥ µ̃. Moreover, µ̃(ν) increases

with ν. At ν = 1, µ̃(1) < 1. At ν = 0.5, using (24), µ̃(0.5) = µ∗(0.5). �

Proof of Proposition 3.2

Let ĉ be the difference between the expected payoff from Ma
2 against the payoff from

taking aL immediately. Let c < ĉ, and let K be such that cK > p0u
H + (1 − p0)uL.

Then, by Theorem 3.1, there exists µ̃ such that Ma
2 is optimal among MK for all

µ ≥ µ̃. In that range it is then optimal to choose K = 2. �

Proof of Theorem 4.1

Proof of (1) Let K > 2 be given. We know that M b
2 is the unique optimal SFSA

when ν = 1. Thus, for any K, V (M b
2) > V (M ′) for other SFSA M ∈ MK whose

randomization probabilities are ε away from that in M b
2 and this inequality holds for

a range of ν’s below 1. Now we demonstrate local optimality of M b
2 for a range of ν’s

below 1 by appealing to Theorem 2.1.

First we compute the continuation values for M b
2 :

VqH (H) = uH , VqL(L) =
η

1− (1− η)ν
uL, VqL(H) = 0,

VqH (L) = (1− η) {ν[µVqL(L) + (1− µ)VqH (L)] + (1− ν)VqH (H)} ,

=
1

1− ν(1− η)(1− µ)

{
µ(1− η)νη

1− (1− η)ν
uL + (1− η)(1− ν)uH

}
.

Thus, the threshold above which transiting to qH is optimal according to Theorem 2.1

(and below which transiting to qL is optimal), denoted by ξ̃, is given by

ξ̃ =
VqL(L)− VqH (L)

VqH (H)− VqL(H)
=
ηξ∗ − (1− η)(1− ν)

1− ν(1− η)(1− µ)
.
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Note that ξ[p(q, `)] = 0 for both q. Thus, local optimality only requires

ξ[p(qH)] > ξ̃ and ξ[p(qL, h)] < ξ̃. (25)

As in the proof of Theorem 3.1 (2), we need to handle equivalent states. Fix some

K ′ ≤ K, and consider a SFSA M with K ′ = I + J memory states that is a replica

of M b
2 . We show that there is no local deviations that can do better than M b

2 from

M . Note that since it is equivalent to M b
2 , for any memory state equivalent to qθ, its

continuation value is still Vqθ(H) and Vqθ(L) as given in M b
2 above, for both θ = H,L.

Let equivalent states of qH be denoted by q1H , ..., q
I
H , and qL be denoted by q1L, ..., q

J
L,

with

σ(qiH , h)(qjH) = αhij, σ(qiH , `)(q
j
L) = α`ij, σ(qiL, h)(qjL) = βhij, σ(qiL, `)(q

j
L) = β`ij. (26)

Then,

f(qiH , H) =ηp0g(qiH) + (1− η)

{
I∑
j=1

[f(qjH , L)(1− ν) + f(qjH , H)]αhji

}
,

f(qiH , L) =η(1− p0)g(qiH) + (1− η)

{
I∑
j=1

f(qjH , L)ν(1− µ)αhji

}
,

f(qiL, H) =(1− η)

{
J∑
j=1

[f(qjL, H) + f(qjL, L)(1− ν)]βhji

}
,

f(qiL, L) =(1− η)

{
J∑
j=1

f(qjL, L)ν[(1− µ)βhji + µβ`ji] +
I∑

k=1

f(qkH , L)νµα`ki

}
.

(27)

As in the proof of Theorem 3.1 (2), we show that p(qiH) and p(qjL, h) satisfy (25) for

all i and j, and we follow the same methodology, i.e., we take the equations in (27) as

simultaneous equations and use the contractions mapping theorem to show that the

inequalities in (25) hold.

Now, we show that if the input {f(qiH , H), f(qiH , L)} satisfies the first inequality in

(25), i.e., f(qiH , H)/f(qiH , L) ≥ ξ̃ for all i = 1, ..., I, the the output {f ′(qiH , H), f ′(qiH , L)}
satisfies f ′(qiH , H)/f ′(qiH , L) > ξ̃ for all i = 1, ..., I. Now, note that

f ′(qiH , H)

f ′(qiH , L)
≥ min

{
p0

1− p0
,
f(qjH , L)(1− ν) + f(qjH , H)

f(qjH , L)ν(1− µ)
, j = 1, ..., I

}
,

34



and hence it suffices to show that

p0
1− p0

> ξ̃, (28)

f(qjH , L)(1− ν) + f(qjH , H)

f(qjH , L)ν(1− µ)
=

1

ν(1− µ)

[
(1− ν) +

f(qjH , H)

f(qjH , L)

]
> ξ̃. (29)

The inequality (28) follows immediately from ξ(p0) ≥ ξ∗. The inequality (29) follows

immediately from f(qiH , H)/f(qiH , L) ≥ ξ̃ > 0, and ν(1− µ) < 1.

Now consider the second inequality in (25). We first show that the inequality holds

at ν = 1 uniformly across the transition probabilities given by (26), and then appeals to

continuity to show that it holds for ν slightly below. First note that when ν converges

to the unity, the third equation in (27) immediately implies that

f(qL, H) =
J∑
j=1

f(qjL, H) = (1− η)

∑J
j=1 f(qjL, L)(1− ν)

η

converges to zero uniformly across the transition probabilities, and hence f(qjL, H)

also converges uniformly. We claim that f(qjL, H)/f(qjL, L) converges to zero across

the transitions probabilities as well. Note that f(qiL, L) > 0 except for the limit case

where βhji, β`ji and αhki converge to zero for all j and k. Thus, we need to show

that f(qiL, H)/f(qiL, L) converges to zero first by taking those transition probabilities

to zero, and then taking ν to the unity. This ensures continuity at the limit. Now fix

some i. Note that when βhji, β`ji and αhki all converge to zero for all j, f(qjL, L) > 0

for some j 6= i, even at the limit. Now, consider the case that limβhji→0 f(qjL, L) > 0

and take βhji to zero. Now, by applying the L’Hopital’s Rule,

lim
βhji→0

ξ(qiL) =
limβhji→0[f(qjL, H) + f(qjL, L)(1− ν)]

limβhji→0 f(qjL, L)ν(1− µ)

=
limβhji→0 f(qjL, H)

limβhji→0 f(qjL, L)ν(1− µ)
+

1− ν
ν(1− µ)

.

Thus,

lim
ν→1

lim
βhji→0

ξ(qiL) =
limβhji→0,ν→1 f(qjL, H)

limβhji→0,ν→1 f(qjL, L)(1− µ)
= 0,

where we have used limβhji→0,ν→1 f(qjL, H) = 0. Similarly, this implies that ξ(qiL, h)

converges to zero as well uniformly as ν converges to one. So there exists ν̃K < 1 such

that the inequality (25) holds for all ν ≥ ν̃K .
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Proof of (2) Here we consider K = 2. Since after seeing `, p(q, `) = 0 for any q,

Theorem 2.1 implies that the only relevant randomization to consider is σ(qL, h)(qL) =

α = 1− σ(qL, h)(qH) for some α ∈ [0, 1]. We first compute the continuation values

VqH (H) = uH , VqL(H) =
(1− η)(1− α)uH

1− (1− η)α
,

VqL(L) =
η[1− (1− η)ν(1− µ)]uL

{[1− (1− η)ν][1− (1− η)ν(1− µ)α]}

+
(1− η)(1− ν)(1− α)[1− α(1− η)2ν(1− µ)]

[1− (1− η)α]{[1− (1− η)ν][1− (1− η)ν(1− µ)α]}
uH ,

VqH (L) =
(1− η)(1− ν)

1− (1− η)ν(1− µ)

{
1 +

(1− η)νµ(1− α)[1− α(1− η)2ν(1− µ)]

[1− (1− η)α][1− (1− η)ν][1− (1− η)ν(1− µ)α]

}
uH

+
η(1− η)νµ

[1− (1− η)ν][1− (1− η)ν(1− µ)α]
uL.

Now, note that the ex ante payoff is given by p0VqH (H) + (1 − p0)VqH (L). Since

VqH (H) = uH , optimal α is independent of p0. Let F (α; ν) = VqH (L). Optimal α is

determined by maximizing F (α; ν). We compute the derivative of F w.r.t. α:

F ′(α; ν) =
(1− η)2ηνµ

[1− (1− η)ν][1− (1− η)ν(1− µ)α]2

×
{

(1− ν)[α2(1− η)2ν(1− µ)− 1]

[1− (1− η)α]2
uH + ν(1− µ)uL

}
.

(30)

Note that the term{
(1− ν)[α2(1− η)2ν(1− µ)− 1]

[1− (1− η)α]2
uH + ν(1− µ)uL

}
is strictly decreasing in α for all ν < 1 while the first term is always positive. This

implies that the optimal α is unique and is determined by the FOC. Moreover, the

optimal solution increases with ν. Now,

lim
ν→1

F ′(α; ν) =
(1− η)2µ(1− µ)

[1− (1− η)(1− µ)α]2
uL > 0

for all α uniformly, and hence the optimal α = 1 for ν close to 1 by continuity, that is

for ν ≥ ν̃2. Finally, F ′(0, ν) ≤ 0 if and only if (recall the condition (12))

−(1− ν)uH + ν(1− µ)uL ≤ 0 ⇔ ν ≤ ν̄,

that is, optimal α = 0 if and only if ν ≤ ν̄. �
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A Online Appendix

A.1 Multiself consistency and Proof of Theorem 2.1

We first extend the modified multi-self consistency to the setup here. Recall the ex-

pression f(q, θ) given by (6) and beliefs p(q) and p(q, x) given by (9).

Definition A.1. A SFSA M satisfies modified multi-self consistency under P0 if

1. for each memory state q ∈ Q with
∑

θ f(q, θ) > 0, each signal x, and any q′ such

that σ(q, x)(q′) > 0,

p(q, x)Vq′(H)+[1−p(q, x)]Vq′(L) ≥ p(q, x)Vq′′(H)+[1−p(q, x)]Vq′′(L) for all q′′ ∈ Q;

(31)

2. for each memory state q ∈ Q with
∑

θ f(q, θ) > 0 and a = d(q),

p(q)u(a,H) + [1− p(q)]u(a, L) ≥ p(q)u(a′, H) + [1− p(q)]u(a′, L) for all a′ ∈ A.
(32)

The following result is crucial for the proof of Theorem 2.1.

Proposition A.1. Suppose that M is an optimal SFSA under prior P0 among those

with |Q| ≤ K.

1. (Modified Multi-self Consistency) It satisfies modified multi-self consistency under

prior P0.

2. (Revelation Principle) For any q, q′ ∈ Q,

p(q)Vq(H) + [1− p(q)]Vq(L) ≥ p(q)Vq′(H) + [1− p(q)]Vq′(L). (33)

Proof. For any pairs of states of nature and memory states, (θ, q) and (θ′, q′), define

the set

W(θ,q),(θ′,q′) =
∞⋃
n=1

W n
(θ,q),(θ′,q′),

where for each n = 1, 2, ....,

W n
(θ,q),(θ′,q′) = {[(θ, q), x1; (θ1, q1), x2; ....; (θn−1, qn−1), xn; (θ′, q′)] : xi ∈ X, qi ∈ Q, θi ∈ Θ},
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that is, the set of possible state transitions from q to q′. Given a state of nature θ and

w ∈ W n
(θ,q),(θ′,q′), define

P(w) = η(1− η)n−1 ×
n∏
i=1

ν
θi−1

θi
µθixiσ(qi−1, xi)(qi),

where (θ0, q0) = (θ, q) and (θn, qn) = (θ′, q′). The expected payoff from the SFSA is

then

V =
∑
θ,θ′,q

P0(θ)
∑

w∈W(θ,qo),(θ′,q)

P(w)u[d(q), θ′]. (34)

We now prove (31) and (32).

First, consider (32). Suppose, by contradiction, that for some memory state q̂

with f(q̂, θ) > 0 such that (32) does not hold, and hence there are actions a = d(q)

and a′ ∈ A with the inequality in (32) reversed with a strict inequality. By (6),

f(q̂, θ) =
∑

θ′
∑

w∈W(θ′,qo),(θ,q̂)
P0(θ

′)P(w), this then implies that∑
θ′,θ

P0(θ
′)

∑
w∈W(θ′,qo),(θ,q̂)

P(w)u(a, θ) <
∑
θ′,θ

P0(θ)
∑

w∈W(θ′,qo),(θ,q̂)

P(w)u(a′, θ). (35)

Now, consider the alternative SFSA M ′, which differs from M only in that d′(q̂) = a′.

From (34) and (35) it follows that M ′ gives a strictly higher expected payoff than M ,

a contradiction to the optimality of M .

Now consider (31). Suppose, by contradiction, that σ(q, x)(q′) > 0 and that for

some q′′ 6= q′,

p(q, x)Vq′(H) + [1− p(q, x)]Vq′(L) < p(q, x)Vq′′(H) + [1− p(q, x)]Vq′′(L). (36)

We denote p′ = σ(q, x)(q′) and p′′ = σ(q, x)(q′′). Now, fix all other transition prob-

abilities other than p′ and p′′, each term P(w) in V given by (34) is a polynomial of

(p′, p′′) and, since η ∈ (0, 1), V is differentiable w.r.t. (p′, p′′). Since M is optimal and

p′ = τ(q, x)(q′) > 0, the FOCs require that ∂
∂p′
V ≥ ∂

∂p′′
V . However, we show below

that (36) implies that
∂

∂p′′
V >

∂

∂p′
V, (37)

a contradiction to the optimality of M .
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To prove (37), it is straightforward to verify that

∂

∂p′
V =

∑
θ,θ′,q̂

P0(θ)
∑

w∈W(θ,qo),(θ′,q̂)(q,x;q
′)

ϕ(q,x;q′)(w)
P(w)

p′
u[d(q̂), θ′], (38)

where

W(θ,qo),(θ′,q̂)(q, x; q′) = {w ∈ W(θ,qo),(θ′,q̂) : (q, x, q′) occurs in w}

and ϕ(q,x;q′)(w) is the number of repetitions of the transition (q, x; q′) within w.

Now, we show that ∂
∂p′
V is proportional to p(q, x)Vq′(H) + [1− p(q, x)]Vq′(L):[∑

θ,θ′

f(q, θ)νθθ′µ
θ′

x

]
[p(q, x)Vq′(H) + [1− p(q, x)]Vq′(L)]

=
∑
θ,θ′

f(q, θ)νθθ′µ
θ′

x Vq′(θ
′)

=
∑

θ0,θ,θ′,θ′′

P0(θ0)
∑
q̂∈Q


 ∑

wq∈W(θ0,q
o),(θ,q)

P(wq)

 νθθ′µθ′x
 ∑

wq′∈W(θ′,q′),(θ′′,q̂)

P(wq′)

u[d(q̂), θ′′]

=
∑

θ0,θ,θ′,θ′′

P0(θ0)
∑
q̂∈Q

 ∑
wq∈W(θ0,q

o),(θ,q),wq′∈W(θ′,q′),(θ′′,q̂)

P[(wq, x,w
′
q)]

σ(q, x)(q′)

u[d(q̂), θ′′]

=
∑
θ0,θ′′

P0(θ0)
∑
q̂∈Q

 ∑
w∈W(θ0,q

o),(θ′′,q̂)

ϕ(q,x;q′)(w)
P(w)

p′

u[d(q̂), θ′′] =
∂

∂p′
V,

where the last equality follows from (38) and the second last equality follows from

p′ = σ(q, x)(q′) and the fact that for any wq ∈ W(θ,qo),(θ,q) and any wq′ ∈ W(θ′,q′),(θ′′,q̂),

(wq, x; wq′) ∈ W(θ,qo),(θ′′,q̂)(q, x; q′) and that each w ∈ W(θ,qo),(θ′′,q̂)(q, x; q′) is counted

ϕ(q,x;q′)(w) times in that list. We have analogous expression for ∂
∂p′′

V , and hence (36)

implies that (37).

Now we prove (33). By modified multi-self consistency, for any x ∈ X and any

q1, q2 with σ(q, x)(q1) > 0 and σ(q, x)(q2) > 0 and any q3 ∈ Q,

[p(q, x)Vq1(H) + [1− p(q, x)]Vq1(L)] = [p(q, x)Vq2(H) + [1− p(q, x)]Vq2(L)]

≥ [p(q, x)Vq3(H) + [1− p(q, )]Vq3(L)] ,

By (9), this implies that for all x ∈ X,∑
θ,θ′

f(q, θ)νθθ′µ
θ′

x Vq1(θ
′) =

∑
θ,θ′

f(q, θ)νθθ′µ
θ′

x Vq2(θ
′) ≥

∑
θ,θ′

f(q, θ)νθθ′µ
θ′

x Vq3(θ
′). (39)
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Thus, (here we assume that the decision rule is deterministic, with no loss of generality

because of (32))

p(q)Vq(H) + [1− p(q)]Vq(L)

= p(q)

{
ηu[d(q), H] + (1− η)

[ ∑
x∈X,q′′∈Q,θ′

νHθ′ µ
θ′

x σ(q, x)(q′′)Vq′′(θ
′)

]}

+ [1− p(q)]

{
ηu[d(q), L] + (1− η)

[ ∑
x∈X,q′′∈Q,θ′

νLθ′µ
θ′

x σ(q, x)(q′′)Vq′′(θ
′)

]}
= η{p(q)u[d(q), H] + [1− p(q)]u[d(q), L]}

+ (1− η)
∑
x∈X

{∑
q′′∈Q

∑
θ,θ′ f(q, θ)νθθ′µ

θ′
x Vq′′(θ

′)

f(q,H) + f(L, q)
σ(q, x)(q′′)

}
≥ η{p(q)u[d(q′), H] + [1− p(q)]u[d(q′), L]}

+ (1− η)
∑
x∈X

{∑
q′′∈Q

∑
θ,θ′ f(q, θ)νθθ′µ

θ′
x Vq′′(θ

′)

f(q,H) + f(L, q)
σ(q′, x)(q′′)

}
= p(q)Vq′(H) + [1− p(q)]Vq′(L),

where the first equality follows from the recursive equation for Vq(θ) for each θ = H,L,

the second follows from (9), the inequality follows term by term, first the terms starting

with η follow from (32), the terms starting with (1− η) follows from (39), again term

by term for each x: any term with q′′ with σ(q, x)(q′′) > 0 has the same value in the

inequality above, and that value is no less than that for the corresponding term with

σ(q′, x)(q′′) > 0, and the last equality follows from the recursive equation for Vq′(θ).

Now we are ready to prove Theorem 2.1.

(1) Let i < j be given. By (33),

p(qj)∆V
H
j,i + [1− p(qj)]∆V L

j,i ≥ 0, and p(qi)∆V
H
i,j + [1− p(qi)]∆V L

i,j ≥ 0. (40)

Since there are no equivalent states, either ∆V H
i,j > 0 or ∆V H

i,j < 0. By our convention

it must be ∆V H
j,i > 0. By the second inequality in (40), ∆V L

i,j ≥ 0. Now, if this last

inequality is an equality, then we can replace all the transition to qi to transition to qj

and obtain a higher ex ante payoff, which is a contradiction to the optimality of the

SFSA. Now, let i < j < k. Again, by (33), we have

p(qj)∆V
H
j,i + [1− p(qj)]∆V L

j,i ≥ 0, and p(qj)∆V
H
j,k + [1− p(qj)]∆V L

j,k ≥ 0, (41)
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and hence
∆V L

i,j

∆V H
j,i

≤ p(qj)

1− p(qj)
≤

∆V L
j,k

∆V H
k,j

.

(2) For part (a), (33) implies that

p(qi)Vqi(H) + [1− p(qi)]Vqi(L) ≥ p(qi)Vqi+1
(H) + [1− p(qi)]Vqi+1

(L)

and hence, by rearranging terms, we have ξ[p(qi)] ≤ ξ̄i. A similar argument holds for

ξ[p(qi)] ≥ ξ̄i−1.

For (b), let q ∈ Q be given. By (31), σ(q, x)(qi) > 0 only if

p(q, x)Vqi(H) + [1− p(q, x)]Vqi(L) ≥ p(q, x)Vqj(H) + [1− p(q, x)]Vqj(L)

for both j = i−1 and j = i+1. This then implies (10). Conversely, it is straightforward

to verify that if (10) holds, then

p(q, x)Vqi(H) + [1− p(q, x)]Vqi(L) ≥ p(q, x)Vqj(H) + [1− p(q, x)]Vqj(L)

for any j = 0, ..., K−1, where q0 = qL and qK−1 = qH . Note that we need the fact that

ξ̄i increases with i for this, as proved in part (1). Moreover, if ξ[p(q, x)] ∈ (ξ̄i−1, ξ̄i),

then the above inequality is strict for any j 6= i and hence σ(q, x)(qi) = 1.

Finally, (c) follows from (32) and a similar argument.

A.2 Regime change with ξ(p0) < ξ∗

Here we consider the regime change model as in Table 3 with ξ(p0) < ξ∗. As mentioned

in the main text, when ν is sufficiently small according to (12), one h-signal can bring

the posterior across ξ∗ and hence the availability heuristic Ma
2 can implement the

unconstrained optimum, but with qo = qL. In contrast, at the other extreme where

ν = 1, the DFSA that implements the unconstrained optimum is given by M b
N+2 as

depicted in Figure 6, where N is given by (13) and where qo = qL,2 and d(qL,i) = aL for

all i = 1, ..., N + 1 and d(qH) = aH (see Hu (2022) for detailed arguments). Intuitively,

in the fixed-world environment, qL,1 represents the memory state in which the DM has

received an `-signal and hence is fully convinced of the state of the world being L and

hence it is a self-absorbing memory state. In contrast, at qL,i for i > 1, the DM has
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qL,1

h,`
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Figure 6: The DFSA, M b
N+2, that implements unconstrained optimum when p0 < p∗

not received any `-signal but have received i− 2 h-signals, and hence the posterior on

H has gone up but has not crossed ξ∗ yet, which happens only at qH .

Now we turn to the case where ν is below one and hence even after an `-signal

the state of the world can still change from L to H. In this case, to implement the

unconstrained optimum, it requires an unbounded number of memory states. The

reason is that, after one `-signal it would require a large number of h-signals to bring

the posterior to reach ξ∗ again for ν close to one, a number that converges to infinity as

ν approaches one. However, for any given constraint K, the following theorem shows

that it is optimal to ignore the possibility of regime change when ν is sufficiently high.

Theorem A.1. Suppose that ∆H = 1 and ∆L = ν ∈ [0, 1] and that µHh = 1 > µ = µL` ,

and that ξ(p0) < ξ∗. If K ≥ N + 2 with N given by (13), then there exists ν̃ < 1 such

that for all ν ≥ ν̃, the optimal SFSA is M b
N+2 with qo = qL,2.

Proof. The proof follows the same steps as in Theorem 4.1. As there, for any given

K ≥ N + 2, We know that M b
N+2 is the unique optimal SFSA when ν = 1. Thus,

for any such K, V (M b
N+2) > V (M ′) for other SFSA M ∈ MK whose randomization

probabilities are ε away from that in M b
N+2 and this inequality holds for a range of ν’s

below 1. Now we demonstrate local optimality of M b
N+2 for a range of ν’s below 1 by
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appealing to Theorem 2.1. First we compute the value functions under M b
N+2:

VqH (H) = uH , VqH (L) = 0,

VqL,1(H) = 0, VqL,i(H) = (1− η)N+2−iuH , i = 2, ..., N + 1

VqL,i(L) = − η{[1− ν(1− µ)]uL + (1− ν)uH}
[1− ν(1− µ)][1− (1− η)ν(1− µ)]

[(1− η)ν(1− µ)]N+2−i

+
η

1− ν(1− η)
uL +

(1− ν)(1− η)N−i+1

1− ν(1− µ)
uH , i = 2, ..., N + 1,

VqL,1(L) =
η

1− (1− η)ν
uL.

Thus,

ξ̄1 =
VqL,1(L)− VqL,2(L)

VqL,2(H)− VqL,1(H)

=

(
ξ∗ +

(1− ν)

1− ν(1− µ)

)
η[ν(1− µ)]N

1− (1− η)ν(1− µ)
− (1− ν)

1− ν(1− µ)
,

ξ̄i =
VqL,i(L)− VqL,i+1

(L)

VqL,i+1
(H)− VqL,i(H)

=

(
ξ∗ +

(1− ν)

1− ν(1− µ)

)
[ν(1− µ)]N−i+1 − 1− ν

1− ν(1− µ)
, i = 2, ..., N,

ξ̄N+1 =
VqL,N+1

(L)− VqH (L)

VqH (H)− VqL,N+1
(H)

= ξ∗.

Now, the corresponding beliefs are given by

ξ(qL,1) =
(1− η)(1− ν)

η
,

ξ(qL,2) = ξ(p0),

ξ(qL,i) =
1− ν + νµp0

(1− p0)[1− ν(1− µ)][ν(1− µ)]i−2
− 1− ν

1− ν(1− µ)
, i = 2, ..., N + 1,

ξ(qH) =
[1− ν + νµp0][1− (1− η)ν(1− µ)]

η(1− p0)[1− ν(1− µ)][ν(1− µ)]N
− 1− ν

1− ν(1− µ)
.

Appealing to Theorem 2.1, local optimality requires

ξ(qH) ≥ ξ∗, ξ(qL,i, h) ∈ [ξ̄i, ξ̄i+1] for i = 2, ..., N, and ξ(qL,1, h) < ξ̄1. (42)

Now, consider a SFSA M that is a replica of M b
N+2 with K ′ ≤ K memory states.

We show that M b
N+2 is still locally optimal against small deviations from such replica,

by showing the corresponding condition for (42). Note that the continuation value
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does not change with the replica memory states and hence the thresholds ξ̄i’s remain

the same. Regarding beliefs, since for the replica state of each qL,i with i ≥ 2, it can

be passed through for at most once, a simple induction argument shows that its belief

coincides with the corresponding memory state in M b
N+2. Moreover,

ξ(qL,i, h) =
1− ν + νµp0

(1− p0)[1− ν(1− µ)][ν(1− µ)]i−1
− 1− ν

1− ν(1− µ)
∈ [ξ̄i, ξ̄i+1),

which is equivalent to(
ξ∗ +

(1− ν)

1− ν(1− µ)

)
[ν(1− µ)]N

≤ ξ(p0) +
(1− ν)

1− ν(1− µ)
≤
(
ξ∗ +

(1− ν)

1− ν(1− µ)

)
[ν(1− µ)]N−1.

(43)

When ν = 1, the first inequality is weak and the second is strict, which follow from

the definition of N given by (13). For ν < 1, the first becomes strict, and the second

is preserved for ν not too small.

Now we consider the replica states of qH and qL,1. Let equivalent states of qH be

denoted by q1H , ..., q
I
H , and qL,1 be denoted by q1L,1, ..., q

J
L,1, with

σ(qiH , h)(qjH) = αhij, σ(qiH , `)(q
j
L,1) = α`ij,

σ(qiL,1, h)(qjL,1) = βhij, σ(qiL,1, `)(q
j
L,1) = β`ij,

σ(qL,N+1, h)(qjH) = γhj, σ(qL,n, `)(q
j
L,1) = γ`nj.

(44)

Then, we have the following recursive equations:

f(qiH , H) =(1− η) {[f(qL,N+1, H) + f(qL,N+1, L)(1− ν)]γhi}

+(1− η)

{
I∑
j=1

[f(qjH , L)(1− ν) + f(qjH , H)]αhji

}
,

f(qiH , L) =(1− η)

{
I∑
j=1

f(qjH , L)ν(1− µ)αhji + f(qL,N+1, L)ν(1− µ)γhi

}
,

f(qiL,1, H) =(1− η)

{
J∑
j=1

[f(qjL,1, H) + f(qjL,1, L)(1− ν)]βhji

}
,

f(qiL,1, L) =(1− η)

{
J∑
j=1

f(qjL,1, L)ν[(1− µ)βhji + µβ`ji] +
I∑

k=1

f(qkH , L)νµα`ki

}

+(1− η)

{
N+1∑
n=2

f(qL,n, L)νµγ`ni

}
,

(45)
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Now we show that ξ(qiH) ≥ ξ∗ for all i. Using the same methodology as in the proof

of Theorem 3.1 (2), i.e., we take the equations in (45) as simultaneous equations and

use the contractions mapping theorem, it suffices to show that

f(qL,N+1, H) + f(qL,N+1, L)(1− ν)]

f(qL,N+1, L)ν(1− µ)
≥ ξ∗,

which follows from the earlier result that ξ(qL,N+1, h) ≥ ξ∗ for ν close to one.

Finally, the result that ξ(qiL,1, h) < ξ̄1 follows a similar argument to that in the

proof of Theorem 4.1 (1) and is omitted.

Theorem A.1 then extends Theorem 4.1 (1) to the case where ξ(p0) < ξ∗. As

Theorem 4.1 (1), this is a less-is-more result, as the optimal SFSA is M b
N+2 for any

given K ≥ N + 2 for a range of ν’s. Moreover, in that case, the DM behaves as if

she ignores the possibility of regime change under the constrained optimal rule and is

stuck to action aL after receiving an `-signal, while an unconstrained DM will continue

to update her belief and will eventually be fully convinced of state of the world H.

However, different from Theorem 4.1 (1), the result in Theorem A.1 requires K ≥ N+2,

with N ≥ 1 given by (13).

Now we turn to the case where K < N + 2. In the fixed-worlds environment, Hu

(2022) has shown that randomization is optimal, with the optimal SFSA taking the

same form with Q = {qL,1, qL,2, ..., qL,K−1, qH}, and that optimal randomization occurs

at every qL,i for i = 2, ..., K − 1 with σ(qi, h)(qi) = α = 1 − σ(qi, h)(qi+1) ∈ (0, 1)

with qK = qH , and we denote this SFSA by M b
K(α); see Figure 7 for a graphical

representation of M b
K(α) with K = 5. This optimal SFSA features randomization in

all intermediate memory states, a feature in contrast to the characterization in Wilson

(2014) where randomization occurs at the extreme memory states.

The following result extends this characterization result of randomization to chang-

ing worlds.

Theorem A.2. Suppose that ∆H = 1 and ∆L = ν ∈ [0, 1] and that µHh = 1 > µ = µL` ,

and that ξ(p0) < ξ∗. If 3 ≤ K < N + 2 with N given by (13), there exists ν̃ < 1 such

that for all ν ≥ ν̃, the optimal SFSA takes the form M b
K(α).

Proof. By Hu (2022), when ν = 1 the optimal SFSA takes the form M b
K(α1, ..., αK−2)

with α1 = α2 = ....αK−2 = α > 0. Following the same arguments as in the proof of
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Figure 7: M b
5(α)

Theorem 4.1, for a range of ν’s below ν = 1 we only need to consider local optimality.

Now we show that for any ν, the locally optimal SFSA of the form M b
K(α1, ..., αK−2)

has the form α1 = α2 = ....αK−2 = α > 0.

First we compute the value functions:

VqH (H) = uH , VqL(L) =
η

1− (1− η)ν
uL, VqL(H) = 0,

VqH (L) = (1− η) {ν[µVqL(L) + (1− µ)VqH (L)] + (1− ν)VqH (H)} ,

=
1

1− ν(1− η)(1− µ)

{
µ(1− η)νη

1− (1− η)ν
uL + (1− η)(1− ν)uH

}
,

Vqi(H) = (1− η){αiVqi(H) + (1− αi)Vqi+1
(H)}, i = 1, ..., K − 2,

Vqi(H) =

[
K−2∏
j=i

1− αj
1− (1− η)αj

]
(1− η)K−1−iuH ,

Vqi(L) = ηuL + (1− η){(1− ν)[αiVqi(H) + (1− αi)Vqi+1
(H)]

+ ν[µVqL(L) + (1− µ)[αiVqi(L) + (1− αi)Vqi+1
(L)]]}, i = 1, ..., K − 2,

We get the solution for Vqi(L):

Vqi(L) =
ηuL

1− ν(1− η)
+

1− ν
1− ν(1− µ)

[
K−2∏
j=i

1− αj
1− (1− η)αj

]
(1− η)K−1−iuH

+ C̃VqH (L)[ν(1− µ)(1− η)]K−1−i

[
K−2∏
j=i

1− αj
1− ν(1− µ)(1− η)αj

]
,

where the constant C̃ can be found by meeting the “initial” condition, i.e. by equating

the solution Vqi(L) in case i = K − 2 to the expression VqK−2
(L) which can be found
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explicitly from the formula for Vqi(L), and hence

C ≡ C̃VqH (L) =
−η

1− ν(1− µ)(1− η)

[
uH +

(1− ν)uL

1− ν(1− µ)

]
.

Note that the ex ante payoff p0Vq1(H)+(1−p0)Vq1(L) is symmetric in (α1, ..., αK−2)

and supermodular, and hence it is optimal to set α = αi for all i. By doing so, the ex

ante payoff is

F (α) = p0

[
1− α

1− (1− η)α

]K−2
(1− η)K−2uH + (1− p0)

ηuL

1− ν(1− η)

+ (1− p0)
1− ν

1− ν(1− µ)

[
1− α

1− (1− η)α

]K−2
(1− η)K−2uH

+ (1− p0)C[ν(1− µ)(1− η)]K−2
[

1− α
1− ν(1− µ)(1− η)α

]K−2
Now we show that F ′(α)|α=0 > 0⇔ ξ(p0, h

K−2) < ξ∗, that is if and only if K − 2 < N

with N given by (13). Now,

F ′(α) = [p0 + (1− p0)
1− ν

1− ν(1− µ)
][K − 2]

[
1− α

1− (1− η)α

]K−3 −η
[1− (1− η)α]2

(1− η)K−2uH

+ [1− p0]C[ν(1− µ)(1− η)]K−2[K − 2]

[
1− α

1− ν(1− µ)(1− η)α

]K−3
ν(1− µ)(1− η)− 1

[1− ν(1− µ)(1− η)α]2

F ′(α)|α=0

η(1− η)K−2uH(K − 2)(1− p0)
= −[ξ(p0) +

1− ν
1− ν(1− µ)

] + [ν(1− µ)]K−2[ξ∗ +
1− ν

1− ν(1− µ)
]

Therefore,

F ′(α)|α=0 > 0

⇐⇒ F ′(α)|α=0

η(1− η)K−2uH(K − 2)(1− p0)
> 0

⇐⇒ −[ξ(p0) +
1− ν

1− ν(1− µ)
] + [ν(1− µ)]K−2[ξ∗ +

1− ν
1− ν(1− µ)

] > 0

⇐⇒ ξ(p0) +
1− ν

1− ν(1− µ)
< [ν(1− µ)]K−2[ξ∗ +

1− ν
1− ν(1− µ)

]

⇐⇒
ξ(p0) + 1−ν

1−ν(1−µ)

[ν(1− µ)]K−2
− 1− ν

1− ν(1− µ)
< ξ∗

⇐⇒ ξ(p0, h
K−2) < ξ∗.
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The LHS of the preultimate inequality is indeed ξ(p0, h
K−2), i.e the result of ap-

plying Bayes’ rule to ξ(p0) K − 2 times in the breakthrough environment for arbitrary

ν.

Theorem A.2 extends the ignoring-regime-change heuristic identified in Theorem

A.1 to include randomization when the constraint K is lower than N + 2. Different

from Theorem A.1, however, in this case more memory states can increase the payoff

up to K = N+2, and hence less-is-more does not hold for K < N+2. As a result, there

would be three regimes if we would introduce a convex cost function for the memory

states. When the cost is exactly zero, then the optimal K would be unbounded. When

the cost is sufficiently small, then the optimal K = N + 2 and the optimal SFSA is

deterministic. That is, we can exclude randomization by endogenously determining

the memory constraint. When the cost is higher, optimal K can be below N + 2 and

randomization is optimal.

Finally, we remark that all the results in this section would hold if we relax the

assumption that ∆H = 1 but it is close to one, and the assumption that µHh = 1 is not

knife-edge either. If we consider ∆H < 1 but close, the only difference is that when p0

is at the boundary according to (13) such that K = N + 2 exactly holds then we need

to discuss the optimal SFSA, which may be M b
N+k for k = 1, 2, 3, depending on the

relative values of ∆H and ∆L. Moreover, when K < N + 2, randomization may take

more complicated forms as well. However, the baseline result that the decision-maker

behaves as if she ignores the underlying regime change will remain, that is, she is stuck

to action aL once an `-signal is received. Similar situation holds for µHh < 1 but close.
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