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Summary. This chapter constructs and analyzes a simple auditing model in order
to answer questions concerning three principal issues: (i) the information contained
in the report, (ii) commitment to the audit policy and (iii) audit effort. The ap-
proach taken is based on the concept of perfect Bayesian equilibrium. We attempt
to examine the nature of such equilibria and arguments as to which equilibrium one
would expect to observe.
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1 Introduction

This paper constructs and analyzes a simple model of auditing in which three
principal issues are explored, namely: (i) The information contained in
the report. An audit is a process of verification of a report of private in-
formation available to the reporter but not to the auditor. What information
is contained in a report? Is it sufficient for the auditor to infer the private
information exactly or is it imperfect? How does this affect what the auditor
does? (ii) Commitment to the audit policy-how does its absence af-
fect reporting and investigation decisions. Can the auditor commit
in advance to an audit policy, even when it may not be optimal to carry out
the policy at the time of implementation, and, related to this, does auditing
have only a purely deterrent role or can it lead to recovery of assets as well?
(iii) Audit effort. How is audit intensity or effort determined?

Our attempts to answer these questions will involve using the concept of
Perfect Bayesian Equilibrium; we will attempt to examine the nature of such
equilibria and arguments as to which equilibrium one would expect to observe.

? Arijit Mukherji tragically passed away in October 2000. This paper is dedicated
to his memory.
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The paper therefore also serves the purpose of introducing the ideas of
equilibrium refinements (and the effects of assuming a player can commit to a
sequence of actions in advance) to the audience for this book and illustrating
the usefulness of these refinements through an important application. The
partially expository nature of our objectives mean that we have explained
proofs and examples in more detail than we would normally have chosen to
do.

We present the basic structure of our model in an informal fashion in this
introduction, and compare it to earlier work. In the next section the model is
specified, emphasizing the nature of the ability to commit or its absence. We
formally derive results for the case when auditing results in perfect discovery
in Sections 3 and 4. In order to examine audit effort or intensity Section 5
assumes that an audit is imperfect so that repeated auditing may be necessary
to verify the report. We conclude by discussing potential empirical implica-
tions of the competing theories of auditing. All proofs are contained in an
appendix.

The game that we consider has two players—a manager, who observes the
true value of the firm he or she manages and who decides whether to consume
some part of this value as perquisites, and an auditor, who does not know
the firm’s true value but is retained by the firm’s shareholders to monitor
the manager’s report of the value. The difference between the true and the
reported value then constitutes the unauthorized consumption of perquisites
by the manager. To focus on the interaction between the audit and reporting
strategy, we assume the auditor has no moral hazard problem in auditing and
acts in the interests of shareholders.

In our model, ”nature” moves first and draws a value for the firm from a
commonly known probability distribution. The manager observes this value
and decides how much to report, retaining the residual as a perquisite. The
auditor observes the report and decides whether or not to audit at a cost c. As
an important distinguishing feature of our model, we assume that the auditor
cannot commit to the audit strategy in advance of the report, but must use
the information conveyed by the report in the audit decision. Assume for the
moment that an audit consists of a single observation that leads to perfect
discovery (This is relaxed later). If there is no audit, the manager obtains a
payoff corresponding to the difference between true and reported value and the
auditor (shareholders) obtains the reported amount.3 If there is an audit, the
auditor obtains the whole value of the firm less the cost of observation and the

3 We assume that both the manager and the auditor are rational economic agents.
In a tax audit context, Erard and Feinstein [EF94] consider the implications of
assuming that some taxpayers are intrinsically honest and will not misreport their
true taxable income. In a model of analytical review, Newman et al. [NPS99] con-
sider a model in which the auditee is honest with some probability, and fraudulent
with the complementary probability. In our model, if the manager were able to
consume the residual, undetected, then he would prefer to do so. Graetz et al.
[GRW86] were the first to consider intrinsically honest taxpayers.
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manager must pay a penalty proportional to the amount of underreporting.
This penalty could be thought of as being nonpecuniary in nature, and hence
not accruing to any individual.

We characterize a large number of equilibria in this model, including some
which resemble the audit policy obtained if the auditor can commit in advance
to the audit policy. This multiplicity of equilibria results from the many dif-
ferent interpretations that the auditor can place on a report, corresponding
to different reporting strategies, all of which provide the same information
to the auditor about the value of an audit. The equilibria of this model all
involve some pooling—managers with different true values make the same re-
port. Therefore auditing potentially has an information acquisition role in any
pooling equilibrium. The report identifies, in equilibrium, a range of values
which the manager may have observed. If the report is audited, the actual
value is discovered in these cases, therefore producing information that was
unavailable before the audit. Some equilibria also involve partially separating
reporting strategies—manager with different values make different reports. In
the range of values in which the equilibrium is separating, the true value can
be inferred exactly from the report and the role of the audit is purely to de-
ter. However, the auditor would still want to audit, since recovery of the fraud
amount involves verification that stealing has actually occurred.

Among all these equilibria, we show how to choose one as most plausible.
The equilibrium that we will argue for involves pooling only at the lower end of
the range of values and separation at all values above a cutoff. This maximally
separating—and therefore maximally informative—equilibrium is chosen by
using the D1 refinement of sequential equilibrium proposed by Banks and
Sobel [BS87]. A pooling reporting strategy will have many out-of-equilibrium
reports that should never be sent by the manager, and D1 places restrictions
on what interpretation the auditor can make if such reports are received.
These interpretations must be credible because it is the auditor’s response
to those reports that ensure that they are never sent. In our context, what
matters is the strong monotonicity property this refinement associates with
beliefs. For any ”unexpected move” (deviation from equilibrium), D1 requires
that the auditor believe that the manager observed that value of the firm that
would make such a deviation most desirable. This will rule out all but the
maximally informative equilibrium.4

The potential empirical implications of our analysis use the maximally sep-
arating equilibrium as the basic prediction. We compare the qualitative fea-
tures of this equilibrium with those when the auditor can commit. In the max-
imally separating equilibrium, every type of manager understates the value of
the firm. Audit probabilities are responsive and strictly decreasing in the re-
port. The prior distribution of firm values affects the equilibrium only towards
the two ends of the support. In contrast, the commitment equilibria have au-
dit probabilities that are constant over a lower range of reports. The manager

4 Reinganum [Rei93] uses a similar device in a different context of plea bargaining.
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understates the report only when it will never be audited. The prior distribu-
tion plays a crucial role in these other equilibria by changing the intervals of
reports that characterize the equilibrium.

We now consider how this model helps us to pose the questions we are
interested in exploring. Like Fellingham and Newman [FN85], an auditor and
a manager choose their strategies optimally given the conjectures each has
of the other’s behavior (In other words, the problem is formulated as an
explicit extensive form game and therefore amenable to equilibrium analysis).
In Fellingham and Newman’s version, the manager has no private information
and the auditor and manager move simultaneously, one choosing whether to
commit fraud and the other whether to audit. Their framework does not
allow auditing to have any informational role, only one of pure deterrence.
It is clear that adding a reporting stage to their game without introducing
private information will not be enough to induce any qualitatively different
conclusions, since both the manager who has committed fraud and the one
who has not will find it optimal to deny fraud. In our approach, on the other
hand, the potential informational role of auditing, in an environment where
strategic misreporting could occur, can be examined along with its deterrent
aspect. This leads to a richer and more complete strategic analysis.

The second major issue is that of commitment. In the tax audit literature
especially, models have been proposed with features similar to ours except that
the order of moves between auditor and manager (or taxpayer) is reversed. In
these papers (Morton [Mor93], Sanchez and Sobel [SS93], Border and Sobel
[BS87], Reinganum and Wilde [RW85], for example) the auditor announces a
policy to which he or she is committed no matter what information is conveyed
by the manager’s report. The equilibrium in such a model consists of the
auditor auditing every report below a certain cutoff with the same constant
probability and auditing reports above the cutoff with zero probability. The
manager (or taxpayer) reports the value truthfully up to the cutoff. If the
value of the firm is above the cutoff, the manager reports the cutoff value.
Thus only those who, in equilibrium, do not commit fraud are audited. The
auditor expects not to find any underreporting when he or she audits, though
she is committed to incur the costs of such an audit. There are several means
by which such a commitment can be sustained, such as bonding, reputation
effects or delegation. We will discuss these below, but each appears to be
somewhat problematic. Our model offers an exploration of the policies that
may result in the absence of such commitment and an elucidation of the
distinctions between the two approaches.

The paper most similar to ours is Reinganum and Wilde [RW86], (espe-
cially the appendix), who analyze a similar reporting game in a tax audit
context. The differences between their analysis and ours are as follows:

1. They consider only a single, perfectly informative equilibrium, whereas
we find all the pure reporting strategy equilibria and show how to refine
these to a unique equilibrium.
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2. Their model allows for an unbounded amount of fraud, by assuming that
there is a negative income tax. Since the manager cannot steal more than
the value of the firm, we place a lower bound on the amount of fraud. We
show this will rule out all perfectly informative equilibria.

3. We also directly model the audit technology, based on the nature of audit
sample information, and consider two distinct ways of modelling audit
intensity. (While the appendix of Reinganum-Wilde deals with the single
audit case we consider in the text, the main body of their paper can be
interpreted as an analysis of audit intensity, though this is not linked to
the single audit case as is done here. They refer to the single-audit case
as the costs being linear with respect to probability.)

We should say, however, that we acknowledge that Reinganum and Wilde
[RW86] was the first paper to raise the commitment issue and to analyse the
consequences of no commitment. Theirs is clearly the pioneering paper in this
area, though we feel that we too have made a contribution as described above.

Another recent paper, Khalil [Kha97], has a title very similar to ours,
though the model he discusses is somewhat different. His paper is in the
context of regulation, modelled as a principal-agent problem with monitoring.
The principal first proposes a contract, the agent who could be one of two
types either accepts or rejects the contract, and if she accepts produces a
level of output. Given the output, the principal could choose to audit or
not, to determine if in fact the agent has produced the contractual output
corresponding to his type. Our model is with a continuum of types and we do
not have a contracting or production stage. The paper does, of course, address
similar issues of commitment and incentives to audit.

The third major area, imperfect audits and audit effort, is analyzed in
section 5. When one unit of audit cost will discover a misstatement only
probabilistically, the audit may be repeated in order to gain higher confidence
in the report. This results in an equilibrium intensity of auditing and a model
of audit effort in which the auditor does not obtain perfect assurance in the
manager’s report. Baiman et al. [?] model a three agent contracting problem
between the owner and manager of a firm and an independent auditor. Al-
though contracting issues among these agents are of high interest, their results
seem too strong, since they show that the auditor will always be motivated to
choose effective auditing to obtain full information whenever he is engaged.
This prevents the auditor from using a strategy which is contingent on the
manager’s report as well as partial auditing to obtain less than full informa-
tion. Our approach is to make exogenous but plausible assumptions about
the contracting relationship in order to focus on the details of the audit and
reporting strategy.

In a previous version of this paper, we showed that our framework applies
also to reporting value to the financial markets. The risk in this case is that
the manager’s report will be overstated (e.g., higher income or assets than
is permitted by accounting principles) so that the manager can show better
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performance in order to obtain bonuses or promotion. We argue that the
risks and benefits to both the auditor and manager for such misstatements
are qualitatively the same as for asset fraud. There is a perfectly informative
equilibrium for reporting fraud. The other main difference is that the audit
probability schedule is now an increasing function of the manager’s report. In
the interests of space, this extension does not appear in the paper.

2 The Perfect Audit Game

This section describes the benchmark case of asset fraud and perfect auditing.
Imperfect auditing and reporting fraud will be considered later. The game
has two players, a manager of a firm and an auditor. As an insider, only the
manager knows the value, v, of the firm, so let v be a random variable with a
continuous probability density function f(·), on bounded support [0, V ]. The
manager must issue a report, r, on the value of the firm. By underreporting
the value, r < v, the manager can obtain rents from the firm in which the
residual v−r is appropriated to his own use, i.e., asset fraud. The amount the
manager can report is restricted to lie in the interval [0, v]: the manager will
not contribute to the firm from his own pocket and cannot take more than
the value of the firm for his own use.

The auditor observes the report and may then choose to conduct an audit
at a cost c > 0, which will perfectly reveal v and the amount of the fraud. If
an audit reveals a misreport, then the manager must return the amount of the
fraud and will suffer some penalty which is assumed to be in proportion to
the amount of the fraud, M(v− r), with M > 0. Acting in the interests of the
owner, the auditor wishes to minimize the expected amount of misreporting
net of audit cost. Formally, the expected payoffs to the manager and expected
costs to the owner, respectively, when the manager observes v, reports r and
the auditor audits with probability p, are

U = (1− p)(v − r)− pM(v − r) = [1− p(M + 1)](v − r)

C = pc + (1− p)(v − r) = (v − r) + p[r − (v − c)].

The basic incentives in this game are straightforward to describe. The manager
wishes to report as little as possible, except to the extent that the audit deters
him. In particular, the manager will be attracted to low reports which are
never audited and carry no risk of discovery. Further, if a report is always
audited or, in fact, audited with any probability greater than 1/(1 + M),
(the probability which makes the manager’s expected payoffs identically zero)
the manager will never choose that report unless he is being truthful. As for
the auditor, the manager’s report may convey some information about the
value of the firm, so the auditor may wish to use this report to calculate the
expected value of the firm. A costly audit will be undertaken only when all
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available information suggests that a sufficient amount of misreporting will
be discovered to justify the audit cost.

The equilibrium concept that formally captures this is the sequential equi-
librium of Kreps and Wilson [KW82] (This paper does not define the equi-
librium concept for infinite strategy spaces, so effectively we use the Perfect
Bayesian Equilibrium concept of Fudenberg and Tirole – see their textbook
[FT91] for an exposition). In most of what follows, we confine our attention
to equilibria with pure reporting strategies.

Definition 1. A pure reporting strategy equilibrium of this game consists of
an audit probability schedule, p(r), reporting strategy, r(v), and posterior up-
dating rule, f(v | r), such that

1. for every v, r(v) maximizes the manager’s expected payoffs,U , for r ∈ [0, v]
and given p(r),

2. for every r, p = p(r) ∈ [0, 1] minimizes the auditor’s expected costs, E(C |
r), where E is the expectation over v given the posterior f(v | r), and

3. for every equilibrium report, r, f(v | r) is the Bayes posterior for the
prior, f(v), given the reporting strategy r(v).

In general, an equilibrium will require that the expected amount of misstate-
ment in a report just be equal to the audit cost5. This is because if there
is too much expected fraud in a report, the auditor will wish to audit with
probability one, in which case, the manager would not issue that report unless
he is being truthful and the report would not be misstated. And if there is too
little fraud in a report, the auditor will not audit and (if it is a low report)
the manager will wish to send that report, thereby increasing the expected
misstatement. When reports are misstated just by the audit cost, the audi-
tor will be willing to audit probabilistically; an equilibrium audit policy must
then motivate the desired reporting behavior from the manager.

There is an alternate way of modelling this problem. Although an audit
occurs after the manager issues his report, in some circumstances it may be
possible for the auditor to formulate the audit policy prior to the report.
Morton [Mor93] and Sanchez and Sobel [SS93] have analyzed auditing in this
case and have found that the following audit policy is optimal:

Definition 2. A commitment audit policy is an audit probability schedule

p(r) =
{

1
M+1 if r < r∗

0 if r ≥ r∗

5 This accounts for our decision to use a continuous, rather than discrete, formu-
lation for the value of the firm. In general, with discrete values and reports, the
manager must use a random reporting strategy to ensure the expected amount of
misstatement is equal to the audit cost, and there will seldom be a pure reporting
strategy equilibrium. Because of this, the continuous formulation is in fact more
tractable.
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for some cutoff report r∗ ∈ [0, V ] which the auditor chooses optimally. When
v is less than the cutoff, the manager cannot avoid being audited with a prob-
ability just sufficient to deter fraud and so will be willing to report truthfully;
when v is greater than the cutoff, the manager will report the lowest amount,
r∗, which carries no risk of discovery. So the corresponding commitment re-
porting strategy is

r(v) =
{

v if v ≤ r∗

r∗ if v ≥ r∗.
We have called this a commitment policy because it requires the auditor to
commit himself to a policy which he will later wish to abandon. To see why,
note that the auditor would not be willing to follow this policy after he receives
the report, since it calls for an audit of reports which are known not to be
misstated, and so is not an equilibrium in our sense. Even if the auditor
announced this policy in advance, if the manager knows it can be revised at
the time of audit, the manager may not find it credible and would instead
predict the auditor will use a policy which satisfies 2. and 3. above. It would
be ideal for the auditor to announce a policy, and have it be believed, but
then follow a different policy at the time of audit, but this is unlikely to fool a
sophisticated and rational reporter who understands the nature of the game.

If there is some mechanism by which the auditor can costlessly commit
himself, then the auditor would generally wish to do this, because, according
to the results of Morton [Mor93] and Sanchez and Sobel [SS93], he could have
committed himself to an equilibrium policy in our sense but chose not to,
evidently to do better. However, the plausibility of such mechanisms need to
be considered carefully. Theoretically, one could publicly post a large bond
with a reliable third party, guaranteeing that the audit policy would be im-
plemented, on penalty of forfeiting the bond. Alternatively, one might argue
that long run reputation effects might enable a commitment to audit reports
which are truthful (see Schelling [Sch60] for a classic discussion of commitment
techniques). However, neither bonding nor public proclamation of the audit
policy is typically observed in practice, perhaps because of the difficulty of
verifying a probabilistic strategy. Another idea, suggested by Fershtman et al.
[FJK91], and by Mookherjee and Png [MP89], is that the audit policy maker
could delegate the implementation of the audit to a computer, or to a sub-
ordinate with an incentive structure to follow the policy rather than discover
fraud. Delegation is very common in practice but, conceptually, it appears to
push back the incentive problem one level: what sustains a commitment to the
computer program or the incentive structure or how does the policy maker
prevent himself from altering the policy at the time of audit? Because of these
difficulties with commitment we believe our equilibrium without commitment
is plausible in many circumstances.

In addition, a commitment audit policy is not a sensitive forum for ex-
ploring the role of information in reporting and auditing. With commitment,
whenever a report is audited a misreport is never discovered because the
audit is done with sufficient intensity to deter fraud from that report. The
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auditor does not attempt to extract information from a report and the audit
never reveals any new information. Thus the deterrent effect of auditing has
overwhelmed any use of information in the audit. In contrast, the sequential
equilibrium we use here is designed to explore just these issues. The next sec-
tion shows that an equilibrium audit policy does require the auditor to use
the information contained in the manager’s report.

3 Equilibria of Perfect Audits

This section analyzes the equilibria of the perfect audit game. We begin by
characterizing an equilibrium in which the manager’s reports are very infor-
mative. Like the commitment policy, the auditor will be able to infer the
value of the firm before auditing, yet unlike commitment, this is not because
the report is truthful since the auditor will be unwilling to incur the audit
cost to merely verify a truthful report. This audit policy is also qualitatively
different from the commitment policy in that lower reports will be audited
with strictly higher probability. There are additional equilibria of this audit
game, including some which resemble commitment audit policies (although
the manager is almost never truthful in his reporting strategy). All of these
equilibria have monotone reporting strategies in which the manager’s report
is nondecreasing in the value of the firm6. With a multiplicity of equilibria
it is important to select one as most plausible, so this section concludes by
showing how to eliminate all but the most informative equilibrium by using a
refinement of sequential equilibrium.

In analyzing this game, it is useful to focus on the nature of the manager’s
reporting strategy, which may be separating—the manager makes distinct re-
ports for distinct firm values, or pooling—the manager sometimes makes the
same report for distinct values. The auditor will use the report to determine
the updated value of the firm in deciding whether to audit, so separating re-
ports will give the auditor perfect information about the value of the firm. For
a separating report, to induce the auditor to audit, it must be that the amount
of fraud in each report is just equal to the audit cost, so this immediately sug-
gests that a separating equilibrium have reporting strategies r(v) = v−c. The
audit probability schedule must then be chosen to induce this strategy from
the manager.

However, for v < c, this strategy calls for the manager to make a negative
report, which was assumed not to be feasible. Therefore, the perfectly reveal-
ing reporting strategy must be modified to allow for pooling at the lowest
report, r = 0. This report must be audited with positive probability since
otherwise the manager would always report 0. With pooling, the auditor will
not be able to infer the firm value, but to induce auditing it must still be that

6 In the appendix, we discuss examples of both nonmonotone and probabilistic
reporting strategies.
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the average amount of fraud in this report is just equal to the audit cost. So
define a lower interval of firm values whose average is equal to c.

Definition 3. Let I0 = [0, v1] be a lower interval such that E(v | v ∈ I0) = c.

I0 is the unique lower interval of types which, if all and only types in that
interval chose the report r = 0, the auditor’s expected recovery from auditing
r = 0 would just equal the audit cost. We will assume that Ev > c, since
otherwise there will exist only the trivial equilibrium in which it is never
worthwhile for the auditor to audit, even when the manager always defrauds
the firm of its entire value. Because f(v) is a continuous probability density
function, the interval I0 exists. We can now state

Proposition 1. There exists an equilibrium (unique as to the audit probabil-
ities of equilibrium reports) in which types v > v1 use the separating strategy
r(v) = v − c and types v < v1 report r = 0. The equilibrium audit probability
schedule is given by

1− (M + 1)p(r) = exp
r − (V − c)

c

for reports r ∈ (v1 − c, V − c] and by

1− (M + 1)p(0) = c exp−V − v1

c

for the report r = 0.

Since every report that is sent contains an average of c amount of misstate-
ment, the auditor is indifferent to auditing or not, and is willing to audit with
these probabilities. It is straightforward to verify that this audit schedule will
induce the required reporting strategy from the manager. The more difficult
part of the proof is uniqueness, which relies on an argument by construction
using an envelope technique.

This equilibrium is very different from a commitment audit policy since it
is a strictly decreasing audit schedule. From an ex ante perspective, the lowest
reports are most likely to contain fraud in relation to the prior expected value
of the firm, and these reports are audited most intensively. Further, in contrast
to the commitment audit policy which never discovers a misreport, an audit
always discovers some amount of misreport except in the zero probability case
that v = 0.

There are other equilibria of this game, but the maximally informative
equilibrium just described will be the unique one to survive refinement. To
show this, we will characterize two additional classes of pure reporting strat-
egy equilibria. The most convenient way to categorize equilibria in signalling
games is by the nature of the pooling in the reporting strategy. We begin
by asking, when can the maximally separating equilibrium be perturbed by
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adding some additional pooling? The answer is that, subject to mild condi-
tions, almost any interval partition, P , of the set of possible firm values, [0, V ],
can be an equilibrium, in which values in each interval in the partition pool
by making the same report7.

Proposition 2. Suppose there is an equilibrium in which p(r) < 1/(M + 1),
for all equilibrium reports, r. Then there is an interval partition, P , of [0, V ]
(in which the intervals may overlap at their endpoints) such that

1. I0 = [0, v1] ∈ P ,
2. for every other I, inf I > E(v | v ∈ I)− c;
3. every v ∈ I reports r = E(v | v ∈ I) − c, except for the highest interval

for which r may be less than this.

Conversely, suppose that P satisfies (1) and (2). Then there is an equilibrium
in which p(r) < 1/(M+1) for all equilibrium reports and in which the reporting
strategy is r(v) = E(v | v ∈ I)− c for v ∈ I.

These conditions can be motivated as follows: First, the partition, P , must
consist of connected intervals. This is because the usual “single-crossing” prop-
erty of the manager’s indifference curves holds here, so that if a given manager
type prefers a higher report to a lower report, then so do all higher types. Sec-
ond, the lowest interval I0 must be an element of the partition for any of these
equilibria since, also by the single-crossing property, these are all and only the
types who will report r = 0. Therefore, there are never any perfectly separat-
ing equilibria here since pooling at I0 is necessary. Third, the auditor must
be indifferent in order to choose 0 < p(r) < 1; so the report for each pool or
interval, I, of types is set so that

r(I) = E(v | v ∈ I)− c.

But all types v > 0 will obtain strictly positive payoff since p(r) < 1/(M +1),
which requires the final condition that v > r(I), for all v ∈ I.

Audit policies that look similar to the one used under commitment can
also be observed in the no-commitment equilibrium, although the reporting
strategy must be different from the commitment game in order to induce the
auditor to audit. Instead of reporting truthfully in the audit region, in which
case the auditor would not be willing to audit, the manager must misstate
the report by the amount c. Because the commitment audit policy leaves the
manager indifferent among reports in the audit region, r < r∗, it is often
possible to construct the required reporting strategies which leave the auditor
indifferent.

Proposition 3. Suppose an equilibrium exists in which

7 Partition equilibria have been explored in the accounting literature on financial
disclosure by Gigler [Gig94], and, most recently Morgan and Stocken [MS98].
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(i) p(r) =
{

1
M+1 if r < r∗

0 if r ≥ r∗

and the manager’s reporting strategy is pure and monotone. Then there is an
interval partition P of [0, V ] such that

(ii) I0 ∈ P
(iii) the highest interval of the partition contains [V − c, V ], and
(iv) for every interval I ∈ P , inf I ≥ E(v | I)− c.

Furthermore, the highest interval is [r∗, V ] and the manager’s equilibrium re-
porting strategy is

(v) r(v) =
{

r∗ if v ≥ r∗

E(v | I)− c if v ∈ I.

Conversely, suppose there is an interval partition of [0, V ] which satisfies (ii),
(iii) and (iv). Then let r∗ be the infimum of the highest interval in the partition
and there is an equilibrium in which the audit strategy is given by (i) and the
reporting strategy by (v).

This shows that there are many equilibria in which the auditor appears to use a
commitment audit policy. As before, when the reporting strategy is monotone,
all and only types in the lower interval I0 will report r = 0. At the other end
of the range of firm values, the manager will report r∗ whenever v > r∗.
In between, the manager cannot avoid the audit region and is indifferent
among all reports. If each interval of types uses the pooling strategy according
to (v) (which never requires the manager to overreport if (iv) is satisfied)
then the auditor will also be indifferent and be willing to audit according
to the commitment policy (i). This is nevertheless quite different from the
commitment equilibrium because (iv) and (v) together imply that, except
when v = 0, the manager always underreports the value of the firm.

In general, the cutoff value that is optimal in the commitment audit policy
may not be an equilibrium cutoff value here. However, even if the two audit
policies are identical, the auditor will be strictly better off with commitment
because, with commitment, the auditor can enforce truthful reporting and
ensure no misreporting when v < r∗8. Without commitment, the manager
will almost always misreport when v < r∗ and the auditor will recover this
fraud only with probability 1

1+M < 1. Thus, although the audit policies may
be identical, the reporting strategies are very different.

This multiplicity of equilibria (the appendix provides examples which show
that there are also equilibria with nonmonotone and with mixed reporting
strategies) can be resolved by showing that the maximally separating equi-

8 Although the manager is indifferent between truthful and misreporting an in-
finitesimally higher audit probability will make the manager strictly prefer to
report truthfully.
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librium of Proposition 1 is the most plausible9. All equilibria of this game
involve some pooling in the manager’s report (unlike the model of Reinganum
and Wilde [RW86]) and also contain out-of-equilibrium reports which are
never sent by the manager no matter what value he may observe. These off-
equilibrium reports are often of crucial importance since the auditor’s re-
sponse to these reports are precisely what prevents them from being sent
and make the equilibrium reports rational for the manager. Sequential equi-
librium places almost no restrictions on how the auditor can interpret out-
of-equilibrium moves, and so he can interpret them in fairly silly ways in
order to make an otherwise incredible response to prevent the move from be-
ing made. Refinements of sequential equilibrium generally focus on how to
interpret out-of-equilibrium moves—what sense will the auditor make if he
observes a report which, according to the equilibrium, should never have been
sent—and place additional restrictions on these out-of- equilibrium beliefs by
asking for the most reasonable interpretation to place on reports that should
not have occurred.

To illustrate the qualitative differences between the equilibria we now
present some numerical examples. Suppose ṽ is uniformly distributed on the
interval [0, 100], suppose that the verification cost c = 20 and that the penalty
parameter M = 10. We will now construct partition equilibria of the type de-
scribed in Propositions 2 and 3.

Example 1. For these parameters, v1 = 40. An example of a hypothetical
three element partition is given by the following: I0 = [0, 40], I1 = [40, 70]
and I2 = [70, 100]. All types v ∈ I0 report 40− c = 0. All types v ∈ I1 report

9 We have received queries about mixed reporting strategies like the ones found in
Crawford and Sobel [CS82]. We should emphasise that our model is not a cheap
talk model like Crawford-Sobel. In Crawford-Sobel, messages are ‘cheap talk’ i.e.,
messages are costless. In our model, messages are costly: a report of v involves
making a payment of v. In addition, if the true type of the manager is v, he
prefers not to report more than v, while Crawford-Sobel make no such restriction,
and over-reporting might occur in equilibrium in their model. The following is
obviously not an equilibrium (as has been suggested): Take any interval Ii =[ai, bi]
in the partition equilibrium discussed in the paper. Let the manager randomise
over ai − c to bi − c. Any reports in this range are supposed by the auditor to
come from Ii. This is impossible to sustain as an equilibrium with non-degenerate
mixed auditing strategies, since E[v | Ii] − r = c, for such a mixed strategy to
be in equilibrium, and this cannot be true for two distinct values of the report
r. (Everything else in the expression above remains the same..) It is also unclear
how the manager with different values of v can be indifferent among such reports,
because it might involve reporting more than the actual value–a negative payoff.

With a continuum of types, the restriction to pure reporting strategies is a nat-
ural one to make, though the pathological examples with non-monotone reports
shows there could be mixed-strategy equilibria. The “disturbed” game interpre-
tation of mixed strategies (due to Harsanyi) in fact uses pure strategies with a
continuum of types to purify mixed strategies.
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55−c = 35. All types v ∈ I2, the equilibrium report is 85−c = 65. All reports
are audited with probability p(r) ≤ 1

11 .

Example 2. In fact this is not the only three element partition. Consider I0 =
[0, 40], I1 = [40, 76] and I2 = [76, 100]. All types v ∈ I0, report 40 − c = 0.
For v ∈ I1, report 58 − c = 38. For v ∈ I2, the equilibrium report would be
88− c = 68.

Example 3. One can similarly build a four element partition I0 = [0, 40], I1 =
[40, 60], I2 = [60, 80], I3 = [80, 100] for the same set of parameters.

Example 4. For all these equilibria, the first and last elements of the partition
are fixed. If we just restricted ourselves to partitions where the other elements
were of equal length, one equilibrium induces the partition I0 = [0, 40], I1 =
[40, 60] , I2 = [60, 80], I3 = [80, 100] and the corresponding equilibrium reports
are {{0}, {30}, {50}, {70}}. Corresponding audit probabilities are any p such
that p < 1

11 for all reports.

There may be different equilibria for the same parameter set. We will now
present the ‘maximally separating equilibrium’ described in Proposition 1.

Example 5. This equilibrium induces the partition I0 = [0, 40], I1 = [40, 100].
Corresponding equilibrium reporting strategies are {0}, {v − 20}. The corre-
sponding audit probabilities are respectively 0.000387148 if 0 is reported, and
1−exp(0.05r−4)

11 for reports r in the upper tail. We obtain p(0) = 0.000387148
by solving 1− 11p(0) = 20exp(− 100−40

20 ).

Example 6. In Proposition 3, we described the ‘commitment like’ partition
equilibria: an example follows. This equilibrium induces the partition I0 =
[0, 40], I1 = [40, 60], I2 = [60, 80], and I3 = [80, 100]. Corresponding equilib-
rium reports are {{0}, {30}, {50}, {80}}, with corresponding audit probabili-
ties {{ 1

11}, { 1
11}, { 1

11}, {0}} respectively.

Example 7. We now show that for the same parameter values, one can con-
struct two distinct equilibria of the type described in Proposition 2, one of
which has a 5 element partition and the other has a 4 element partition,
with the additional feature that the ‘finer’ partition (the one with 5 elements)
refines the ‘coarser’ 4 element partition. If we assume the same parameter
values as before, one can consider an equilibrium which induces the 4 ele-
ment partition I0 = [0, 40], I1 = [40, 60] ,I2 = [60, 80],I3 = [80, 100], with
corresponding equilibrium reports {{0}, {30}, {50}, {80}} and another equi-
librium which induces the 5 element partition I

′
0 = [0, 40], I

′
1 = [40, 60],

I
′
2 = [60, 70], I

′
3 = [70, 80], I

′
4 = [80, 100], with corresponding equilibrium re-

ports {{0}, {30}, {45}, {55}, {80}}. As our previous examples illustrate, par-
tition equilibria can not, in general, not be ranked in terms of ‘fineness’.
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The above examples illustrate the magnitude of the issue of multiple equilibria
that we face, and lead us to the next issue, that of refinements.

Although there are many refinements available in the literature, we shall
use “Divinity” by Banks and Sobel [BS87] and reformulated as “D1” by Cho
and Sobel [CS90], who show that it is generically equivalent in this sort of
signalling game to the “strategic stability” of Kohlberg and Mertens [KM86],
the most powerful refinement criterion available. It is difficult to characterize
strategic stability in infinite games like ours, so this equivalence may not hold
here. Nevertheless, it gives special plausibility to the use of D1. Also, for a
general class of signalling games, Cho and Sobel [CS90] have shown that D1
selects a unique equilibrium, a result we confirm below.

In our context, D1 can be described as follows: the auditor observes an out-
of-equilibrium report, r, and is considering whether manager type v may have
sent the report. The answer depends on the relative strength of the manager’s
incentives to send that report and what he speculates may happen if he sends
this report rather than his equilibrium report. If there is some other type v′

who would be willing to issue r under a wider range of possible responses by
the auditor than would v, then D1 requires that the auditor never believe that
v could send report r. More formally,

Definition 4. For any equilibrium, let A(v) be the set of audit probabilities
for r for which type v would either weakly or strictly prefer the report r to
his equilibrium report. Let B(v′) be the set of audit probabilities for r for
which some type v′ would strictly prefer the report r to his equilibrium report.
If A(v) ⊂ B(v′), then type v′ has stronger incentives to deviate from his
equilibrium report than v does, because v′ would strictly prefer a larger set of
possible auditor responses than v weakly prefers. In such a case, D1 requires
that the auditor cannot place any weight on the conjecture that type v sent the
off equilibrium report. In particular, the equilibrium satisfies D1 if the Bayes
posterior for this report r and type v is zero: f(v | r) = 0.

Because the manager always prefers a lower audit probability (and because
it is continuous and monotonic in his expected payoff), this condition can
be simplified somewhat. All types who are deterred by lower probabilities
of audit are also deterred by higher probabilities. For every type, calculate
the audit probability for an out-of-equilibrium report which would leave the
manager indifferent between that report and his equilibrium report. Then, if
that report is observed, the auditor must believe it was sent by the type(s)
who have the largest such probability. An equilibrium survives D1 if all of the
off-equilibrium beliefs satisfy this criterion, and most importantly, the audit
probabilities specified for these out-of-equilibrium reports are optimal given
these beliefs.

We can now show that only the maximally informative equilibrium of
Proposition 1 survives D1. All of the others fail because D1 prevents the au-
ditor from adopting beliefs which allow him to audit with sufficient probability
to deter some manager types from making out-of-equilibrium reports.
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Proposition 4. The only equilibrium to survive D1 is the maximally infor-
mative equilibrium of Proposition 1.

The idea of the proof is to consider the reports made by any two adjacent in-
tervals in the pooling partition. The reports in between are out-of-equilibrium.
For an out-of-equilibrium report, r′, sufficiently close to the higher report, r,
D1 requires that the auditor believe it was sent by the type inf I on the lower
boundary of the upper adjacent interval, I, since this type has the strongest
incentive to send such a report. But if r − E(v | I) = c so that the auditor is
willing to audit r, then r′ − inf I < c, if r′ is sufficiently close to r, and the
auditor is not willing to audit r′. But this cannot be an equilibrium because
the manager would then prefer the lower r′ which is not audited to the higher
report r which he is supposed to make.

This argument rules out the equilibria of Proposition 2, where there is
much pooling among high types, and also the commitment-like equilibria of
Proposition 3, where reports immediately below the cutoff report are out-
of-equilibrium. It does not rule out the maximally informative equilibrium.
Although all reports r′ ∈ (0, v1 − c) are never observed in equilibrium, D1
requires that the auditor believe that v1 sent such reports. But in this sepa-
rating equilibrium, v1 − r(v1) = c, so v1 − r′ > c for lower reports and the
auditor will wish to audit with probability one, which is what is required to
prevent the manager from sending those reports.

4 Comparative Statics

Since we have selected the maximally separating equilibrium as the most
reasonable solution to this game, we will concentrate on this equilibrium to
discuss the empirical implications of the analysis.

An increase in the penalty rate, M , will uniformly decrease all the audit
probabilities, since with higher penalties, one need audit less often to ob-
tain the same reporting behavior. However, M has no effect on the reporting
strategy. This is because the manager’s reporting strategy must be chosen to
leave the auditor indifferent between auditing or not, and the auditor is not
directly affected by M . This implies that the penalty rate will not affect the
initial amount of misreporting, but will affect the average amount discovered
after an audit—a higher penalty rate will increase the expected amount of
misreporting remaining after an audit.

Recall that the auditor’s costs are C = v − r + p(r − v + c). Given the
manager’s reporting strategy, the last term is expected to be zero, so the au-
ditor’s costs are just the initial amount of underreporting, which is unaffected
by M . Although we have held the auditor’s fee revenue from auditing con-
stant in this game, this suggests that audit fees will also be unaffected by
M if they are determined by the total costs of the auditor. The manager’s
expected payoff, U = [1−p(M +1)](v− r), is also unaffected by M . Although
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the audit probability will change with M , there is no net effect on the term
[1 − p(M + 1)]. There is also no effect on the reporting strategy. In sum,
changes in the penalty rate will affect the audit strategy, but very little else.

A change in the audit cost, c, will have more consequential effects. As c
increases, there will be uniformly less auditing and more misreporting, so the
expected costs of the auditor and the expected payoffs to the manager will
both increase. Therefore, audit fees will increase with c. The reason c plays,
a more fundamental role in the model than does M , is that M enters the
model only through the term 1− (M + 1)p, in the manager’s expected payoff
function, so p can adjust to accommodate any changes in M without affecting
any other aspect of the solution. On the other hand, c determines the amount
of misreporting, as well as the cutoff value, v1, for types that will report r = 0.

There are two ways in which a change in the prior distribution of firm
values may affect the equilibrium: through a change in v1 or a change in
V . Holding V constant for the moment, if it becomes more likely that the
firm’s value is larger (in the precise sense of a decrease in the conditional
expectation of the lower interval E(v | v ∈ I0), a condition which is not in
general equivalent to first order stochastic dominance) then v1 must increase.
The only effect on the equilibrium is that a larger interval of firm values will
report r = 0, and p(0) will decrease to attract this larger interval. For values
who continue to make strictly positive reports, there is no change in either
the reporting strategy or audit probabilities. Since the expected amount of
misreporting at r = 0 must still be equal to c, there is no change in the total
amount of misreporting, or in the expected costs of the auditor. Less fraud
will be discovered, however, because p(0) has decreased.

If the upper bound, V , of the support increases, but without altering the
conditional expectation around the lower interval, [0, v1], then the audit prob-
ability schedule will increase, so that p(r) will be higher for every r. This will
decrease the manager’s expected payoff, but the expected amount of mis-
reporting and the auditor’s expected costs will be unchanged at c. It often
appears that the highest reports are audited most intensively in practice, par-
ticularly in a tax audit context. This may be one explanation of this practice
because, even though the wealthy taxpayer reports higher income than an in-
digent, the auditor may have very different priors for the two taxpayers(This
is also the explanation in Reinganum and Wilde [RW86]).

5 Imperfect Audits and Audit Effort

In this section, we examine how this model may be generalized to include
an effort choice for the auditor. To this point, the audit was assumed to be
perfect and would perfectly reveal the true value of the firm. The only effort
choice concerned the probability with which the auditor would undertake an
audit. Since audits are seldom perfect in fact, auditing will frequently be
sequential, in which further investigation is done after an initial examination



18 Kalyan Chatterjee, Sanford Morton, and Arijit Mukherji

of the manager’s report. The details of this process are complicated and will
surely vary according to the circumstances, so we wish to make our first
step in the analysis of sequential audits as simple as possible. One natural
assumption is that an audit is imperfect and will discover a misreport only
with some probability less than one, which might be described as the reliability
of the audit technology. If the auditor audits only once and fails to discover
a misreport, he cannot be sure that the report was correctly stated; but it
is now reasonable to repeat the audit since the probability of discovering a
misreport (if one exists) is strictly increasing in the number of repetitions. Of
course, the total audit cost should also be increasing, so this will enable us to
examine the trade offs the auditor faces in choice of audit effort, that is, in
the number of repetitions of the audit.

Suppose π is the probability that an audit will discover a misreport if
one exists. Therefore, with probability π, a single audit will publicly reveal
the value of the firm and the auditor can cease any further investigation; but
with probability 1−π, the audit will not discover any information to disprove
or confirm the manager’s report. The auditor’s decision problem now reflects
the imperfect reliability of the audit technology. Consistent with our earlier
approach that the auditor cannot commit in advance to an audit policy, we
assume that at each repetition the auditor will decide whether to investigate
further10. This results in an infinite dynamic programming problem in which,
at each stage, i, the auditor will choose the probability of auditing, pi, to
minimize his expected current and future costs. Let Ei be an expectation
with respect to v based on whatever information the auditor has acquired up
to stage i. If he audits report r at stage i he will incur the audit cost of c.
With probability π he will learn the value of the firm and will stop, but with
probability 1 − π, he will not discover the value of the firm, and he will face

10 An alternative to this sequential decision problem might be called batch auditing
in which the auditor decides in advance of any auditing, but after observing the
manager’s report, how many repetitions to make, somewhat in the way sample
sizes are often calculated. This batch approach to repeated auditing may not
constitute a credible audit policy since the auditor may wish to change the batch
size after it is partially collected. Reinganum and Wilde’s [RW86] assumption
of an audit cost which is convex in the probability of discovery appears to be
equivalent to batch auditing. Other possible interpretations of their formulation
are also possible, including the size of the audit team assigned to a particular
task.
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the costs of proceeding. Of course, he will also face these future costs if he
does not audit11.

Letting Ci+1 be the expected future costs beyond stage i, the auditor will
choose pi to minimize

Ci = Eipi[c + π · 0 + (1− π)Ci+1] + (1− pi)Ci+1

If the auditor ceases to audit at stage N and beyond, his cost becomes

CN = EN (v − r).

Since the result of each audit is independent, the probability of not dis-
covering the value of the firm after auditing the report r with probabilities
pi(r) is

∏∞
i=0(1− pi(r)π), so the probability that the value will be discovered

is

p(r) = 1−
∞∏

i=0

(1− pi(r)π).

The payoffs to the manager are unchanged from the perfect audit game, except
that the manager cares now only about the probability of discovery, and not
the probability or intensity of audit per se:

U = (1− p)(v − r)− pM(v − r) = [1− p(M + 1)](v − r).

The manager will choose his report to maximize U given p(r).
We note two features of this equilibrium which simplify the auditor’s deci-

sion problem. First, an audit either reveals the firm’s value or not. If it does,
then auditing and the game terminates. If it does not, then the auditor gets no
additional information about v12. Therefore the auditor’s information at ev-
ery stage that the game continues is identical to his information immediately
after the manager’s report: Ei(·) = E(· | r). Second, suppose in any stage
that the auditor strictly desires to audit. If a misreport is not discovered in
that stage, then, since the auditor has gained no additional information about
v, he will also strictly desire to audit in the next stage. This will continue in
every stage until the probability of discovery approaches one, which cannot
be an equilibrium since the manager would not misreport when he is certain
to be discovered. Therefore, in equilibrium, whenever the auditor is willing
to audit a report even once, it must be that he is indifferent to auditing in

11 This implicitly assumes a strict liability rather than negligence standard for the
auditor, since he will be subject to penalty whenever he fails to discover a mis-
report, no matter how intensively he audited. It would be interesting to explore
a negligence standard in which the auditor is penalized only if he fails to collect
sufficient competent evidence. We are not yet sure how to model such standards
of evidence. Also, in practice, auditors are liable to be sued whenever they do not
find a misreport, so the strict liability regime may be the more plausible.

12 This is an important aspect of the specification.
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every stage, and being indifferent, he can ignore the future costs. He will then
choose pi to minimize

Ci = Epi[c + (1− π)(v − r)] + (1− pi)(v − r)
= E(v − r) + pi[c− πE(v − r)].

This shows that the auditor’s dynamic programming problem is, in this game,
equivalent to a myopic, one period problem. With this we can now prove the
following:

Proposition 5. Suppose p(r), r(v) are equilibrium auditing and reporting
strategies when the audit is perfect and the audit cost is c′. Let pi(r) be any
audit probabilities such that for every r

p(r) = 1−
∞∏

i=0

(1− pi(r)π).

Then pi(r), r(v) constitute a sequential sampling equilibrium when the audit
cost is c = c′ · π.

Since this proposition shows that every imperfect audit can be translated
into a perfect audit, the same selection principles can be used to choose the
maximally informative equilibrium as the uniquely plausible outcome of the
model. It also shows that, in a qualitative sense, the basic model with per-
fect auditing is very robust to the incorporation of audit effort. Aside from
observing repeated audits, imperfect auditing is essentially a change in the
audit cost. It is also apparent that many different combinations of pi(r) can
result in the same p(r). It is natural to focus on the monotonic audit strat-
egy in which the auditor audits n(r) times with probability one until the last
which is audited with probability pn(r). These are uniquely determined by
the probability of discovery

p(r) = 1− (1− π)n(r)(1− pn(r)π).

With this convention, as the system becomes more reliable, the number of
repetitions declines.

6 Conclusion

In this paper, we have examined a simple model in which the strategic in-
terplay between commitment and informational asymmetry can be studied.
This is an alternative to the more common contracting approach in account-
ing which assumes commitment and public verifiability. The inability of the
auditor to commit leads to a wide variety of equilibrium auditing and re-
porting behavior. It is not enough for the auditor to merely specify an audit
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policy,;this policy must also be consistent with expectations about the man-
ager’s reporting strategy and, in particular, about the interpretations formed
when unexpected, out-of-equilibrium reports are observed. These additional
restrictions imposed on the auditor have surprising implications in permitting
more rather than fewer equilibria. Further, in the equilibria where the auditor
uses an audit policy similar to the one used in the commitment equilibrium
but the manager never uses a truthful reporting strategy, these restrictions
on the auditor can change the manager’s behavior but not the auditor’s.

By examining the plausibility of various out-of-equilibrium expectations,
we were led to a unique equilibrium in which the manager always misreports
the value of the firm and this misreport is sometimes discovered. This is the
polar opposite of the commitment model where the value of the firm is always
truthfully reported when it is below the cutoff and the audit never discovers
a misreport. Casual empiricism suggests that both results are extreme, since
audits sometimes, but not always, discover a misreport. These extreme results
are generic in simple models, and to obtain the middle ground it may be
necessary to depart from strict rationality assumptions.

Another difference between the commitment and no commitment models
is that comparatively little use is made in the latter of the probability dis-
tribution of types. The upper bound and lower tail of the distribution have
marginal effects on the equilibrium, but otherwise, the reporting and audit
strategies are largely independent of the distribution. The distribution is de-
termined by institutional features and the equilibrium’s robustness here is an
attractive feature.

In both models, the informational role of the audit is relatively minor.
To a large extent, it is the report that conveys information on the value of
the firm. In the commitment model this is always true and the audit plays
an exclusively deterrent role. Many of the equilibria without commitment
have fairly uninformative reports, which leaves room for the audit to discover
something, but we have shown that the equilibrium in which the reporting
strategy is maximally informative is the most plausible in this case as well. It
appears that the informational aspect of auditing is subsidiary to its deterrent
role.

Comparative statics on the maximally informative equilibrium highlight
the importance of the audit cost. A change in that cost has pervasive ef-
fects on both the audit policy and reporting strategy, whereas changes in the
penalty rate on the manager or the prior distribution of firm values are of less
consequence.

We have also examined a generalization to imperfect auditing and audit
effort. Formally, the auditor’s problem becomes an infinite dynamic program
since he may now wish to repeat the audit to obtain greater confidence that
the audit was reliable. With considerable relief, we were able to simplify the
problem to a static program and show that an imperfect audit was essentially
equivalent to an increase in the audit cost of a perfect audit. In addition to
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showing how audit effort responds in equilibrium to the reliability of the audit,
this robustness gives greater credibility to the basic game.
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Appendix

Because there are many equilibria of this game, it is useful to begin by stating
some conditions that will be true of all equilibria.

Lemma 1. For any equilibrium,

1. p(r) > 0 when r = 0.
2. p(r) = 0 for V − c < r ≤ V.
3. p(r) ≤ 1/(1 + M) for any report chosen by the manager.
4. p(r) is nonincreasing among the reports that may be chosen by the man-

ager.

Proof. (1) If p(0) = 0, then the manager will always choose r = 0, since this
maximizes fraud and also has no risk of discovery. But then the poste-
rior given r = 0 will be identical to the prior and the expected recovery
from auditing will be Ev − c > 0. So, the auditor will wish to audit with
probability one, a contradiction.

(2) Since the manager can never report more than the value of the firm, the
maximum amount that can be recovered from a report r ∈ (V − c, V ] is
V − r < c. Therefore, the expected recovery from such reports is less than
the audit cost and the auditor will never audit.

(3) A probability of audit of 1/(1 + M) is just sufficient to deter all underre-
porting, so if the manager chooses a report with p(r) > 1/(1+M), he must
be reporting truthfully. Consequently, there will be nothing to recover in
such a report and the auditor will prefer to choose p(r) = 0.

(4) A lower report implies that the manager is appropriating more of the value
of the firm to his own use. If he can obtain more rents from the firm at a
lower risk of discovery, he will never issue the higher report, contradicting
the assumption that the manager will sometimes issue the higher report.

Proof of Proposition 1:

Since every type v > v1 misreports by exactly c, and since all types v < v1

report r = 0, which is an average misreport of c, the auditor is willing to
audit with these probabilities. In turn, it is straightforward to verify that it
is optimal for the manager to make these reports when faced with this audit
policy.

To prove that this audit policy is necessary given this maximally sepa-
rating reporting strategy, we construct the unique audit probability schedule
that will induce this reporting behavior using a general technique based on
the envelope theorem. Define the maximum value function of the manager’s
reporting problem when faced with some audit probability schedule, p(r):

u(v) = max
r

[1− p(r)(M + 1)](v − r) | 0 ≤ r ≤ V.
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This is the manager’s indirect utility as a function of the firm value. By
the Maximum Theorem of Berge [Ber63], u is continuous in v and its total
derivative is equal to the partial of U with respect to v, whenever it exists:

u′(v) =
∂

∂v
[1− p(r(v))(M + 1)](v − r) = 1− p(r(v))(M + 1) =

u(v)
v − r(v)

.

Using the boundary condition that the highest type is never audited, p(r(V )) =
0 or u(V ) = V − r(V ). The solution to this differential equation is

u(v) = [V − r(V )] exp−
∫ V

v

1
t− r(t)

dt

for v > 0, and for continuity let u(0) = 0. When r(v) = v − c, then

u(v) = c exp
v − V

c
= [1− (M + 1)p(r(v))]c.

Substituting v = r + c yields

1− (M + 1)p(r) = exp
r − (V − c)

c
.

To find p(0), we use the fact that v1 is indifferent between, r = 0 and r = v1−c

[1− (M + 1)p(0)] = u(v1) = c exp−V − v1

c

and this concludes the proof.

Proof of Proposition 2:

For the first half of the Proposition, suppose p(r) is the audit policy in this
equilibrium. Since p(r) < 1/(M + 1) for all equilibrium reports r, every type
r > 0 must obtain strictly positive expected utility. This implies that p(r)
must be a strictly decreasing function of equilibrium reports, since otherwise
the manager could obtain higher expected payoff by making a lower report
without incurring any increased probability of audit.

Let I(r) be the set of types who are willing to choose r:

I(r) = {v | for all r′, [1− (M + 1)p(r)](v − t) ≥ [1− (M + 1)p(r′)](v − r′)}.

We will show that I(r) must be a connected interval. Let v and v′′ ∈ I(t) and
consider v′′ > v′ > v. If r′ is not an equilibrium report, then it cannot be
preferred by v′ to r, so suppose that r′ is an equilibrium report and further
that r′ < r. Since v prefers r to r′, some algebra shows that v′ > v does also:
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[1− (M + 1)p(r)](v′ − r)− [1− (M + 1)p(r′)](v′ − r′)
= [1− (M + 1)p(r)](v − r)− [1− (M + 1)p(r′)](v − r′)

+(M + 1)(v′ − v)[p(r′)− p(r)]
≥ 0

since v prefers r, v′ > v, and p(r) is decreasing for equilibrium r. An analogous
argument shows that r′ will not prefer any r′ > r since v′′ prefers r and v > v′.
Thus I(r) is a connected interval. These inequalities also show that if v is
indifferent between distinct equilibrium reports r and r′, then v′ > v strictly
prefers one or the other. Thus, two distinct intervals can overlap at most at a
singleton.

Since, in an equilibrium, every v must have a maximizing report, every
v is in some I(r). Therefore, the set of all I(r), for equilibrium r, form a
partition of [0, V ], except that the endpoints of an interval of positive length
may overlap with its neighbor. By the Maximum Theorem of Berge [Ber63]
the maximum value function

u(v) = max
r

[1− (M + 1)p(r)](v − r) | 0 ≤ r ≤ r

is continuous in r, so that such an endpoint does in fact overlap with the
neighboring interval and that type is indifferent between the reports of the
two intervals. Types in the interior of an interval are in no other interval and
so strictly prefer a unique report.

Since p(r) is strictly decreasing among equilibrium reports, only the high-
est interval can have an audit probability of zero. All other intervals must
have a strictly interior audit probability, which requires that the auditor be
indifferent:

c = E(v | v ∈ I(r))− r,

for all equilibrium reports r. This may hold as a weak inequality for the highest
interval. This proves (iii), as well as (i) when r = 0.

To prove (ii), recall that whenever v > 0, the manager must receive a
strictly positive expected payoff and therefore must report less than the full
value of the firm. Thus, for the lower endpoint of each interval

inf I(r) > r ≥ E(v | v ∈ I(r))− c,

and (ii) is proved. This shows necessity and completes the first half of the
proof.

We now show that these same conditions are sufficient for a partition to be
the reporting pools of an equilibrium. The proof is by construction and uses
an envelope argument, which is shown to be equally applicable to pooling as
well as separating equilibria.

For a interval partition P of [0, V ], let I(v) ∈ P be the interval which
contains v. Let r(v) be the pure reporting strategy
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r(v) = E(v′ | v′ ∈ I(v))− c.

Since I(v) is an interval, r(v) is a nondecreasing step function; by (ii),
inf I(v) > r(v) > 0 for v > 0, and by (i), inf I(0) = 0 = t(0), so reports
are nonnegative and no type is required to report an amount greater than the
firm value. Note also that r(V ) ≤ V − c.

We can now construct a maximum value function, u(v), for the manager
using the envelope condition that the total derivative is equal to the partial
derivative of the manager’s optimal objective function with respect to v. If
r(v) is to solve the reporting problem, then the value function must be

u(v) ≡ [1− (M + 1)p(r(v))][v − r(v)]

and the envelope condition is that

u′(v) =
∂

∂v
[1− (M + 1)p(r(v))][v − r(v)].

We specify as boundary condition that the highest type is never audited,
p(r(V )) = 0 or u(V ) = V − r(V ). The solution to this differential equation is

u(v) = [V − r(V )] exp−
∫ V

v

1
t− r(t)

dt

for v > 0, and for continuity let u(0) = 0. The remainder of the proof con-
sists of constructing an equilibrium which yields this u(v) when the manager
reports r(v).

To specify audit probabilities for equilibrium reports, construct p(r(v)) so
that if v chooses r(v) he attains u(v):

[1− (M + 1)p(r(v))][v − r(v)] = u(v).

These audit probabilities are strictly less than 1/(M+1), since u(v)/[v −
r(v)] > 0. For reports off the equilibrium path, let

p(r) =
{

1 if r < V − c
r0 otherwise.

The auditor is willing to choose these probabilities since, for equilibrium re-
ports, r(v) was constructed to leave the auditor indifferent. Probability assess-
ments for out-of-equilibrium reports can easily be constructed so that when
r < V − c, the auditor believes it is some type v ≥ r + c and wishes to audit;
when r > V − c, the auditor believes it is some type v ≤ r + c and prefers not
to audit.

Given these audit probabilities, we must show that r(v) is a maximizing
report for the manager. He will not choose any off-equilibrium report that is
audited with probability zero since there is the lower equilibrium report r(V )
that is also never audited. He will not choose any other off-equilibrium report
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since these are audited with probability one. Therefore, it remains only to
show that manager v prefers r(v) to any other equilibrium report r(v′):

u(v) ≥ [1− (M + 1)p(r(v′))][v − r(v′)].

Using the definition of u(v′) this is equivalent to

u(v)
u(v′)

≥ v − r(v′)
v′ − r(v′)

or,

exp−
∫ v

v′

1
t− r(t)

dt ≥ exp−
∫ v

v′

1
t− r(v′)

dt.

But this last inequality holds because r(v) is a nondecreasing step function.
This proves sufficiency and completes the proof.

Proof of Proposition 3:

Since the audit probability 1/(M + 1) gives the manager an expected payoff
of zero, if (i) is the audit strategy, then for v > r∗, the manager will report r∗,
the lowest report that is not audited, and for v ≤ r∗, will be indifferent among
all reports r ∈ [0, v]. Therefore, the manager will report r∗ if v is in the highest
interval I∗ = [r∗, V ]. From Proposition 1(ii), reports r ∈ (V − c, V ] will never
be audited, so it must be that r∗ ≤ V − c and this proves (ii). Also, according
to (i), the auditor cannot strictly prefer to audit r∗, so c ≥ E(v | [r∗, V ]− r∗,
and (iii) holds for I = I∗.

If the reporting strategy is monotone, the set of firm values for which the
manager issues the same report must be a connected interval. Since v = 0 is
constrained to issue report r = 0, the set of values which issue that report
must be the interval I0 = [0, v1], in which E(v | I0) = c, in order to induce
the auditor to audit r = 0. This proves (i) and (ii) for I = I0.

For other intervals, I, the reports issued when the firm value is in I will be
audited probabilistically, so the expected misstatement must equal the audit
cost, E(v | I)− r = c, when r is reported by the values in I. This establishes
the reporting strategy for I 6= I∗. Finally, the manager is constrained never
to report more than the value of the firm, so if r is reported by the values
in I, this reporting strategy implies that r = E(v | I) − c ≤ inf I and (iii) is
proved.

It is straightforward to verify the second half of the Proposition so its
proof is omitted.

Example of Nonmonotone and Mixed Reporting
Strategies:

Proposition 3 shows that there are an extremely large number of well behaved
step function equilibria: subject to mild conditions, any pooling of types by
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reporting strategy into connected intervals can be an equilibrium. However,
even these conditions are not sufficient, since by relaxing the requirement
that reporting strategies be monotone, we can also generate an equilibrium
in which the pools are not connected intervals and can then generate mixed
reporting strategy equilibria.

Example 8. Let V = 5 and c = 1. Consider the nonmonotone reporting strate-
gies for the nonconnected pools:

r(v) =





0 if v ∈ [0, 1] ∪ [2, 3]
1 if v ∈ (1, 2) ∪ (3, 4)
4 if v ∈ [4, 5]

and audit strategy

p(r) =
{

1/(M + 1) if r < 4
0 otherwise.

Suppose v is uniformly distributed within each of these five intervals [n−1, n]
but that the probability mass of each interval, qn, may differ. Set the expected
recovery from auditing r = 0 and r = 1, respectively, to be equal to the audit
cost

(.5q1 + 2.5q3)
(q1 + q5)

= 1

(1.5− 1)q2 + (3.5− 1)q4)
q2 + q4)

= 1,

or
q1 = 3q3

q2 = 3q4

respectively. Clearly, these can be chosen small enough so that the auditor is
willing to audit r = 0 and 1, and there is some positive residual probability for
q5. The out-of-equilibrium beliefs necessary to support this as an equilibrium
can be specified easily enough so that any report not used in equilibrium is
audited with probability 1.

However, in a preview of the argument used in Proposition 4, these equi-
libria do not survive plausible restrictions on beliefs off the equilibrium path.
Suppose a report of 3.99 is made and audited with a probability p.Obviously,
this can only be from types in [3.99,5] since all other types will get a neg-
ative payoff even if p = 0. Consider some v ∈ (4, 5]. The equilibrium pay-
off for these types is v − 4, since a report of 4 is not audited. Therefore
such a type will be indifferent between deviating and playing equilibrium if
(v−3.99)(1− (M +1)p) = v−4. The quantity v−4

v−3.99 is increasing in v, there-
fore v = 4 will strictly prefer deviating for values of p for which higher types
would be indifferent, so that the deviation to 3.99 can only come from [3.99,4].
Given this, 3.99 will not be audited, so this equilibrium does not survive D1
(see the proof of Proposition 4) below.
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Example 9. Let everything be as in Example 1 and assume specifically that
q1 = q2 = .10, q3 = q4 = .30, and q5 = .20. The proof of Proposition 4
shows that there is also an equilibrium with monotone reporting strategies
and connected pooling intervals. In particular, it is

r(v) =





0 if v ∈ [0, 2]
2 if v ∈ [2, 4]
4 if v ∈ [4, 5]

with the same audit strategy as in Example 8. This is an equilibrium because
v is uniform on each of the above three intervals, so E(v | v ∈ [0, 2]) = 1 and
E(v | v ∈ [2, 4]) = 3.

To construct a mixed reporting strategy equilibrium, suppose the manager
randomizes among the reporting strategies of these two equilibria according
to the flip of a coin, i.e., independently of v. If the auditor observes a report
of 1 or 2, he knows which equilibrium is being played, but not if he observes
0 or 4. In either equilibrium, he is willing to audit reports less than 4, so he
is still willing even without being able to infer the equilibrium.

Proof of Proposition 4:

We first show that D1 eliminates the pooling equilibria of Proposition 2, in
which the reporting strategy is monotonic and the equilibrium audit prob-
abilities are strictly decreasing. Let rn < rn+1 be two adjacent equilibrium
reports, with audit probabilities pn > pn+1, sent by types in the intervals
[vn, vn+1] and [vn+1, vn+2], respectively, with vn < vn+1 < vn+2. Consider an
out-of- equilibrium report r ∈ (rn, rn+1).

The largest audit probability, p, for r such that a type v ∈ [vn, vn+1] will
weakly prefer r to his equilibrium report rn is given by

1− (M + 1)p = [1− (M + 1)pn]
v − rn

v − r
.

Because r > rn, the right hand side is decreasing in v, so the v ∈ [vn, vn+1]
with the largest such p is the upper bound, vn+1. A parallel argument estab-
lishes that the v ∈ [vn+1, vn+2] who has the largest such p is the lower bound,
vn+1. This shows that among types in the two adjacent pools who make re-
ports just above and just below the out-of-equilibrium report, D1 requires
that the auditor believe it is only the boundary type who could have sent the
report. A similar argument also shows that the auditor will believe it is this
boundary type among all other pools.

We now ask what these beliefs imply about the auditor’s choice of au-
dit probabilitites for out-of- equilibrium reports. Consider first the out-of-
equilibrium reports r ∈ (0, v1 − c) that are common to every equilibrium of
Proposition 2, including the maximally informative equilibrium. The auditor
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must believe all these are sent only by v1. But since v1 − r > c, he will audit
all these with probability one. This is fine, since the manager will then be
deterred from sending these reports, as was desired.

Now consider any other out-of-equilibrium report r ∈ (rn, rn+1), bounded
by two pools. By Proposition 2, to convince the auditor to audit rn+1 with
the required probability we must have

rn+1 = E(v | v ∈ [vn+1, vn+2])− c.

In particular, rn+1 > vn+1 − c, so there is an out-of-equilibrium report r ∈
(rn, rn+1), but sufficiently close to rn+1, such that r > vn+1−c or c > vn+1−r.
Therefore, the auditor will not audit this r, and since it is not audited, types
who should have chosen higher reports will now choose here, thus destroying
every equilibrium containing a higher pool.

The maximally informative equilibrium also contains no reporting at the
highest reports, r ∈ [V − c, V ]. D1 requires that the auditor believe type V
sent these reports and so he will not audit, as in the Lemma, which is as
specified for the maximally informative equilibrium.

Turning finally to the commitment-like equilibria of Proposition 3, note
that reports in (r∗− c, r∗] must never be chosen by the manager. If one were,
then v = r∗ is the largest that the firm value could be, because these reports
are being audited with probability 1/(M + 1) and values v ∈ (r∗, V ] would
prefer to choose r∗ and not be audited. Consequently, the auditor would not
audit such a report, a contradiction, and so reports in (r∗ − c, r∗] are out-
of-equilibrium. By similar arguments as above, D1 requires that the auditor
believe that v = r∗ sent such report, r; so v − r < c and the auditor will not
audit r, thus eliminating these equilibria as well.

Proof of Proposition 5:

The pi(r) have been defined so that the probability of discovery is p(r) . Since
the manager cares only about this probability of discovery, he will be willing
to report r(v). Conversely, suppose that the manager reports according to
r(v). Then p(r) solves

max E [v − r + p(c′ − (v − r)) | r]
= E [v − r | r] + p[c− πE(v − r | r)]/π

so, p[c − πE(v − r | r)] is zero for every r. Therefore, whenever, p(r) > 0 in
perfect auditing, the manager will be willing to choose pi(r) > 0 at any stage
in imperfect auditing, and conversely as well. In particular, the manager will
be willing to choose a combination of pi(r) such that

p(r) = 1−
∞∏

i=0

(1− pi(r)π)

as is required.


