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Abstract

Raiffa’s solution to the bargaining problem, outlined in Luce and Raiffa (1957), is
the point where the negotiation curve - a sequence of points that constitute step-by-step
improvements from the status quo in the feasible payoff space - meets (possibly in the
limit) the efficient boundary of the feasible region. This paper is devoted to clarifying
the logic of Raiffa’s solution and its relationship with the Nash bargaining solution.
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1 Introduction

We consider bilateral bargaining in a two-player strategic form game, where a randomly
chosen player proposes a correlated strategy for playing the game and the other accept or
rejects. We describe the bargaining in terms of the two oldest solution concepts in that field,
those of Nash (1950, 1953) and Raiffa (1953). There are extensive form bargaining models
that give these solutions in some limiting allocation, namely those of Binmore et al. (1986)
for Nash’s solution; and, Myerson (1991) and Sjöström (1991) for Raiffa’s solution. In all
these extensive forms, bargaining ends in the first stage in subgame perfect equilibrium.

While Nash proposed a single-stage demand game as strategic support for his solution,
Raiffa’s main conceptual innovation is the negotiation curve, which starts at the status
quo point and moves to the Pareto frontier, presumably in real time. This suggests that
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Raiffa conceived of bargaining as a process of initial disagreement and delay. In more recent
models of bargaining, delay is usually a function of asymmetric information or, at least, of
uncertainty. One approach to modeling the process is taken by Hu and Rocheteau (2020) and
Rocheteau et al. (2021), who break up the negotiation into several stages, and the outcome in
a stage becomes the status quo point for the next. We adopt a different approach, considering
a finitely repeated game in which payoffs are per period and an agreement is only valid for
the period in which it is obtained.

Raiffa’s solution to the bargaining problem, described in Raiffa (1953) and outlined in Luce
and Raiffa (1957)1, is the final payoff point on the efficient boundary, in a sequence of
points starting from the status quo, that constitute step-by-step improvements in players’
payoff positions. Geometrically, the Raiffa sequence of payoff points may be seen as a
potentially non-linear negotiation curve in the feasible payoff space that eventually meets
the efficient boundary, possibly in the limit. It is natural to be interested in the relationship
between Raiffa’s solution and Nash’s solution, especially given the apparently different ideas
underlying them. Luce and Raiffa, in their book, make the following remarks:

“... in the continuous motion model, the slopes of the negotiation curve and of the Pareto
optimal curve are of the same magnitude at their point of intersection, but of the opposite
sign. If one “linearizes” this model by demanding that the negotiation curve be a straight line
having this same relation between its slope and that of the Pareto optimal curve at their point
of intersection, then the arbitrated point is Nash’s point where the product is a maximum.
" Luce and Raiffa (1957)

The relationship between Raiffa’s solution and Nash’s solution is the central concern of this
paper. We show that as bargaining frictions vanish (to be made precise later), Raiffa’s solu-
tion converges to Nash’s solution. As one eminent reader of a draft of this paper commented,
one could think of this enterprise as an exploration of scientific history.

The strategic aspects of Raiffa’s solution were studied only much later. Sjöström (1991)
shows that the equilibrium payoffs of a finite horizon bargaining model approximate Raiffa’s
solution as the offers become more frequent. Myerson (1991)2 describes a finite horizon
bargaining model, which in the limit as the horizon becomes infinite, implements Raiffa’s
solution as the unique subgame perfect equilibrium value. These models, however, do not
reveal any relationship between Raiffa’s solution and Nash’s solution. In section 5, we use a
version of Myerson’s bargaining model that has discounting frictions to define a noncoopera-
tive Raiffa solution as its equilibrium bargaining value. Theorem 1 is our first result of the

1pp. 136-137 of the Dover publications 1989 reprint
2pp. 393
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Myerson Model
(with deadline frictions)

Myerson Model
(with deadline frictions)
+ discounting frictions

Rubinstein Model

Raiffa solution Nash solution

discounting frictions vanish deadline frictions vanish

deadline frictions vanish discounting frictions vanish

Figure 1: Relationship between the Raiffa solution and the Nash solution via a version of Myerson’s
bargaining model.

paper which establishes that as the bargaining frictions vanish, the noncooperative Raiffa
solution so defined converges to the Nash bargaining solution with respect to the deadlock
point, 0, for the model. The reason behind this result is revealed by looking at the behavior
of the model as we change the order in which the frictions disappear; this is illustrated in
Figure 1. On letting the discounting frictions disappear first, we are back to Myerson’s bar-
gaining model which leads to Raiffa’s solution when deadline frictions disappear. However,
on letting the deadline frictions disappear first, we get Rubinstein’s bargaining model for the
strategic form game with 0 as the deadlock point. We know from Binmore et al. (1986) that
as the discounting frictions disappear next, we get Nash’s solution with respect to 0. The
crucial argument in the proof is to establish the validity of the limit interchange. This key
technical property is proved in Lemma 10.

The modified Myerson’s model is deficient, however, in two respects. As Rubinstein’s bar-
gaining model has 0 as the deadlock point, Theorem 1 is a limited result in that the
convergence-to-Nash result does not obtain for an arbitrary status quo point. Moreover,
bargaining stops in the first period. As a way of addressing these limitations, in section 7,
we study a bargaining model for a finitely repeated game with an exogenous status quo;
and use it as the basis for once again defining a noncooperative Raiffa solution, but with
respect to this model. The crucial difference with Myerson’s bargaining model for a one-
shot game is that the prevailing contract at the current date determines the contract at the
next date by determining the continuation value of rejection for the responder. This makes
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it easier to conceive the current period payoff as constituting the status quo for the next
period. The proposer in the current period then offers the next date’s contract so as to
make the responder indifferent between accepting and rejecting the offer. Theorem 2, our
central result, establishes that as the deadline and then the discounting frictions disappear,
the noncooperative Raiffa solution with respect to this model with the pre-specified status
quo converges to the Nash bargaining solution with respect to the same status quo.

The bargaining model of section 7, we think, is better suited as a model of Raiffa’s solution
because unlike the models of Myerson and Sjöström, it features an equilibrium path3 of
negotiated contracts, which could be conceived as a nontrivial4 noncooperative negotiation
curve - an idea central to Raiffa’s conception of the bargaining process. The noncoopera-
tive negotiation curve is in contrast to the (cooperative) Raiffa negotiation curve discussed
in section 4. Nevertheless, the Raiffa negotiation curve does show up in the model as a
sequence of threat points, recursively computed using the backward induction algorithm.
With discounting frictions present, players care about the payoffs they realize all along the
noncooperative negotiation curve. However, as the model becomes frictionless, players only
care about where they finally end up on the curve. The final point is the Nash bargaining
solution because as the deadline frictions disappear, the model becomes the random-offer
Rubinstein style bargaining model for the infinitely repeated game with an exogenous status
quo, which is studied in section 6. We know from Proposition 2 in that model that as
the discounting frictions disappear, the solution converges to Nash bargaining solution with
respect to the given status quo.

The plan of the paper is as follows. In section 2, we discuss closely related literature. Section
3 develops some basic geometry of the polytope formed by strategic game payoffs. Raiffa’s
bargaining solution for a strategic game is discussed in section 4. In section 5, we analyze a
finite horizon bargaining model for a one-shot play of the game. Section 6 is an interlude to
the main theme, where we analyze a random offer Rubinstein style bargaining model for an
infinitely repeated game with a status quo, primarily to get a convergence-to-Nash result.
However, in Appendix C, we also use this model to place Raiffa’s mediation interpretation of
his solution in a strategic setting. Specifically, we add a mediator to the model who makes
an offer to both players every period - an offer that reflects the value of strategic bargaining
and is therefore accepted by both players every period. It is on this mediated path that we
see the Raiffa negotiation curve eventually leading up to the Nash solution. In section 7,
we then develop and analyze a finitely repeated game with a status quo. The analysis in
the models developed in the main body of the paper appeal to results that parallel Binmore

3stochastic in the present model
4typically consisting of multiple steps
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et al. (1986), although in the context of a strategic form game. For this reason, we lay out
the risk-of-breakdown model in Appendix A and the time preference model in Appendix B.
Finally, we conclude in Section 8.

2 Related Literature

We follow Nash (1953) in taking a strategic form game as the primitive environment for
bargaining. Unlike Nash however, players use a sequential strategic bargaining process, in
the style of Rubinstein (1982), Binmore and Dasgupta (1987), and Binmore et al. (1986),
to write a contract. We think that taking a strategic game as the basic data for bargaining
theory is a desirable goal, as it allows us to compare noncooperative and contractual modes
of behavior in the same unified language. Raiffa also takes the strategic form game as the
primitive when discussing his solution in Luce and Raiffa (1957).

Table 1 contrasts some well known bargaining solutions like the Nash solution and the
Rubinstein solution with the (cooperative) Raiffa solution and the noncooperative Raiffa
solution defined in this paper. The Rubinstein solution has the property that negotiation
cost (arising from impatience) off the equilibrium path leads to zero negotiation costs on
the equilibrium path. In contrast, the Raiffa solution has the property that it traces out an
actual path from the status quo to the solution.

As far as we are aware, Sjöström (1991) and Myerson (1991) were among the first to develop
the noncooperative foundations of Raiffa’s bargaining solution. Rocheteau et al. (2021), in
recent work, formalize decentralized trade of a divisible asset (valued linearly) as a gradual
bargaining problem (consisting of time-indexed Pareto-frontiers with an initial status quo)
in the sense of O’Neill et al. (2004). They construct strategic bargaining models with the
feature that the owner of the asset makes the asset incrementally available for negotiation.
This leads to step-by-step negotiations in the model and as the horizon becomes infinite, the
equilibrium payoffs, described by a system of differential equations, converge to the ordinal
solution of O’Neill et al. (2004). In a companion paper, Hu and Rocheteau (2020), by taking
a model with the feature that the owner of the consumption good makes it incrementally
available for negotiation, show that the solution converges to the proportional bargaining
solution of Kalai (1977).

In the cooperative game theory literature, Raiffa’s solution (discrete version) has been ax-
iomatized by Anbarci and Sun (2013) and further by Trockel (2015) using axioms related to
Kalai (1977)’s axiom of step-by-step negotiation. In particular, Trockel (2015) axiomatizes
Raiffa’s solution as the unique solution satisfying efficiency, scale covariance, symmetry and
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Nash Solution Raiffa Solution Rubinstein Solution Noncooperative Raiffa
Solution

Nature axiomatic descriptive with
noncooperative
flavor

strategic strategic

Description unique point
satisfying cer-
tain axioms

unique point
where nego-
tiation curve
meets efficient
boundary

unique SPE of a strate-
gic bargaining model
with discounting fric-
tions

unique SPE of a strate-
gic bargaining model
with per-period pay-
offs; with deadline and
discounting frictions

Efficiency efficient efficient (assum-
ing negotiation
takes no time)

efficient possibly inefficient
with frictions; conver-
gence to efficiency

Condition
under which
same

- when efficient
boundary is
linear

same as time-
preference Nash
solution with 0 as
deadlock point

same as time-
preference Nash
solution with respect
to deadlock point
when frictions vanish

Negotiation
curve

none possibly nonlin-
ear and explic-
itly defined

straight line (one step)
from deadlock point to
solution

stochastic equilibrium
path of prevailing
contracts; straight
line (one step) from
deadlock point to
Nash solution in the
limit; Raiffa’s nego-
tiation curve appears
as backward-in-time
sequence of threat
points

Table 1: Comparison of bargaining solutions

a consistency property by which the midpoint solution of TU bargaining games can be ex-
tended to NTU bargaining games. A generalized version of Raiffa’s solution is axiomatized
by Diskin et al. (2011).

3 Strategic Game and its Geometry

The payoff environment for bargaining is described by a strategic form game between two
players indexed by i P N “ t1, 2u. Player i’s feasible (pure) actions ai lie in a finite set
Ai; and mixed actions in the probability simplex ∆pAiq. Let A “ A1 ˆ A2 be the finite
set of feasible pure action profiles a “ pa1, a2q. Let player i’s preferences over ∆pAiq be
represented by the expectation of a stage game vNM payoff function given by ui : A ÞÑ R
and let u “ pu1, u2q be a profile of vNM payoff functions. The stage game G is defined
by the components xN,A,uy and is viewed as the underlying payoff environment in which
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players get opportunities to propose contracts and also to accept or reject contracts that are
directed to them.

Let upAq be the image of A under u. Then upAq is a finite set in Rn. Let F :“ copupAqq be
the convex hull of the set upAq. Then F is a polytope in Rn. Let BF be the (strongly) efficient
boundary of F . That is, BF “ tu P F : Eu1 P F such that u1 ě u and u1 ‰ uu. Let B´F
be the weakly efficient boundary of F . That is, B´F “ tu P F : Eu1 P F such that u1 " uu.
The efficient boundary is contained in the weakly efficient boundary. That is, BF Ď B´F .
For any compact set S Ď Rn, let mipSq :“ minuPS ui and let MipSq :“ maxuPS ui. If S Ď F ,
then these numbers are interpreted as the minimum and the maximum payoff respectively,
of player i, among the payoff vectors in the set S. We record two elementary properties
about these numbers.

Lemma 1. For any player i “ 1, 2, we have MipBFq “MipFq.

Proof. We prove the claim for player 1. The proof for player 2 is similar. As BF Ď F , we
haveM1pBFq ďM1pFq. To establish the reverse inequality, take any point pM1pFq, u2q P F .
Then it follows from the definition of B´F that pM1pFq, u2q P B´F . As B´F is a compact
set, let u‹2 :“ maxpM1pFq,u2qPB´F u2. Then pM1pFq, u‹2q P BF . Therefore, M1pBFq ě M1pFq.
This establish the lemma for player 1. Q.E.D.

Lemma 2. The payoff vectors pm1pBFq,M2pBFqq and pM1pBFq,m2pBFqq are extreme points
of F .

Proof. We prove the claim for the first point. The proof for the second point is similar.
Arguing by way of contradiction, suppose there exist two distinct points pv1, v2q and pw1, w2q,
both in F , and α P p0, 1q such that pm1pBFq,M2pBFqq “ αpv1, v2q ` p1 ´ αqpw1, w2q. This
implies that M2pBFq “ αv2 ` p1 ´ αqw2. Therefore, either v2 ą M2pBFq or w2 ą M2pBFq.
Without loss of generality, suppose it is the former. Then by Lemma 1, we have v2 ąM2pFq.
But this contradicts the definition of M2pFq, thereby establishing the lemma for the point
pm1pBFq,M2pBFqq. Q.E.D.

Let C be a coordinate system with pm1pBFq,m2pBFqq as the origin. Refer to the horizontal
axis as C1 and the vertical axes as C2. Then C1 and C2 divide the plane into four quadrants
Q1, Q2, Q3 and Q4.

Let h1 : rm2pFq,M2pFqs ÞÑ R and h2 : rm1pFq,M1pFqs ÞÑ R be functions defined by

h2pd1q :“ maxtu2 : pu1, u2q P F and u1 ě d1u

h1pd2q :“ maxtu1 : pu1, u2q P F and u2 ě d2u
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pm1pBFq,M2pBFq “ h2pd
1
1qq

pM1pBFq “ h1pd
1
2q,m2pBFqqpm1pBFq,m2pBFqq

pd1, d2q

pd1, d
1
2qpd11, d

1
2q

pd11, d2q ph1pd2q, d2q

pd1, h2pd1qq

C1

C2

Q1

Q2

Q3

Q4

Figure 2: Geometry of F :“ copupAqq and mappings h1 and h2
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In the maximization problems that define h1 and h2, the feasible sets are compact subsets of
R2 and the objective functions are continuous. Therefore, Weierstrass’ Theorem guarantees
that h1 and h2 are well defined.

Then we have

h2pd1q “

$

&

%

M2pBFq if m1pFq ď d1 ă m1pBFq

maxtu2 : pu1, u2q P F and u1 “ d1u if m1pBFq ď d1 ďM1pFq

h1pd2q :“

$

&

%

M1pBFq if m2pFq ď d2 ă m2pBFq

maxtu1 : pu1, u2q P F and u2 “ d2u if m2pBFq ď d2 ďM2pFq

The range of h2 is rm2pFq,M2pFqs, and the range of h1 is rm1pFq,M1pFqs. Figure 2 illus-
trates the geometry of the mappings h1 and h2 for an example of a strategic game polytope.
Lemmata 3, 4 and 5, which follow next, are easy consequences of the definition of h1 and
h2.

Lemma 3. For any point d “ pd1, d2q P F , we have h1pd2q ě d1 and h2pd1q ě d2. If
d R B´F , then the inequalities are strict.

Lemma 4. The functions h1 and h2 are continuous, decreasing and concave on their respec-
tive domains.

Lemma 5. When the domain of h1 is restricted to rm2pBFq,M2pFqs and the domain of h2
is restricted to rm1pBFq,M1pFqs, then h1 and h2 are strictly decreasing and strictly concave.
Moreover, they are inverses to each other i.e. h2 “ h´11 and h1 “ h´12 .

Lemma 6. For any point d “ pd1, d2q P F ,
´

h1pd2q,maxpd2,m2pBFqq
¯

and
´

maxpd1,m1pBFqq, h2pd1q
¯

are points on the efficient boundary BF .

Proof. Consider the first point in the statement of the lemma. Suppose d2 ą m2pBFq. This
happens when d P Q1 X F or d P Q2 X F . Then the first point, ph1pd2q, d2q is a point
where the horizontal line through d intersects the efficient boundary BF . The opposite
inequality, d2 ď m2pBFq is true when d P Q3XF or d P Q4XF . In this case, the first point
ph1pd2q,m2pBFqq “ pM1pBFq,m2pBFqq P BF .

Consider the second point. Suppose d1 ą m1pBFq. This happens when d P Q1 X F or
d P Q4 XF . Then the second point, pd1, h2pd1qq is a point where the vertical line through d
intersects the efficient boundary BF . The opposite inequality, d1 ď m1pBFq is true when d P

Q2XF or d P Q3XF . In this case, the second point pm1pBFq, h2pd1qq “ pm1pBFq,M2pBFqq P
BF . Q.E.D.
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pm1pBFq,M2pBFqq

pM1pBFq,m2pBFqq
pm1pBFq,m2pBFqq

R1 “ d
ph1pd2q, d2q

pd1, h2pd1qq

R2

R3
R4

KS solution of pF ,dq
ph1pR

2
2q, R

2
2q

pR2
1, h2pR

2
1qq

utopia point of pF ,dq

utopia point of pF ,R2q

KS egalitarian direction from d

KS egalitarian direction from R2

Nash solution of pF ,dq

Figure 3: A finite-step piecewise-linear Raiffa negotiation curve. KS stands for Kalai
Smorodinsky.

4 Raiffa’s bargaining solution

Luce and Raiffa (1957) describe what is generally understood as Raiffa’s sequential bargain-
ing solution RpF ,dq for the bargaining problem pF ,dq. Myerson (1991), on pp. 393 of his
book, describes it formally as the limit as k Ñ 8 of a recursively defined sequence pRkqkě1

of feasible payoffs where

R1
“ d

Rk`1
“
ph1pR

k
2q, R

k
2q ` pR

k
1 , h2pR

k
1qq

2

Figure 3 depicts the payoff vectors in the Raiffa sequence pRkqkě1. Following Raiffa’s in-
tuitive description of this sequence as a negotiation curve comprising of step-by-step im-
provements upon the current status quo point, we may think of the negotiation curve
pR1,R2,R3,R4q in three steps - first, as a movement from R1 to R2; second, as a movement
from R2 to R3, and finally as a movement from R3 to R4. Figure 3 shows this piecewise
linear negotiation curve in gray directed arrows. For the first step, Raiffa defines R2 as a
fair compromise of players’ most selfish offers. Geometrically, this is defined as the midpoint
of the most selfish payoff offers ph1pd2q, d2q and pd1, h2pd1qq. However, it is easily seen by
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pm1pBFq,M2pBFqq

Nash solution = KS solution = Raiffa solution

pM1pBFq,m2pBFqq
pm1pBFq,m2pBFqq

R1 “ d
ph1pd2q, d2q

pd1, h2pd1qq

R2 ph1pR
2
2q, R

2
2q

pR2
1, h2pR

2
1qq

R3

utopia point of pF ,dq
KS egalitarian direction from d, R2, R3

Figure 4: An infinite-step linear Raiffa negotiation curve.

completing the rectangle that the movement in the first step from R1 “ d to R2 is in the
direction of the utopia point of pF ,dq which, following Kalai and Smorodinsky (1975), may
be termed the Kalai Smorodinsky egalitarian direction from d. The extent of movement
is precisely till the point where the two diagonals of the rectangle meet. For the second
step, R2 constitutes the status quo; and again the movement from R2 to R3 is in the Kalai
Smorodinsky direction from the current status quo R2. For the third and final step, R3

is the status quo; and the movement is to R4 which lies on the efficient boundary and is
therefore the Raiffa bargaining solution for the game shown.

In general, the Raiffa sequence may be an infinite sequence, in which case, the iterative limit
of the Raiffa sequence is a point on the efficient boundary BF of the strategic game, which is
considered as the Raiffa bargaining solution. Figure 4 depicts the first three payoff vectors
in the (infinite) Raiffa sequence pRkqkě1 that are part of the infinite step Raiffa negotiation
curve that is nevertheless linear - in fact, a line segment joining d to the extreme point of
the efficient boundary.
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5 A finite horizon bargaining model for the one-shot game

The payoff environment5 for bargaining is a strategic game G that satisfies Assumption
4. Take the finite horizon bargaining model described by Myerson (1991). This model
implements Raiffa’s Bargaining Solution in the unique subgame perfect equilibrium in the
limit as the model becomes frictionless. Let us modify that bargaining game by adding
discounting frictions over and above the deadline frictions that the model already has; and
by taking 0 as the deadlock point. This bargaining model, denoted by EMpG, δ, kq, is depicted
in Figure 5.

Let Wptqpδq “ pW
ptq
1 pδq,W

ptq
2 pδqq denote the continuation values of the unique subgame per-

fect equilibrium of EMpG, δ, kq starting at round t from the end. By the Backward Induction
Algorithm, we have

Wp1q
pδq “ 0 (1)

Wpt`1q
pδq “

1

2

”´

h1
`

δW
ptq
2 pδq

˘

, δW
ptq
2 pδq

¯

`

´

δW
ptq
1 pδq, h2

`

δW
ptq
1 pδq

˘

¯ı

(2)

Lemma 7. Suppose G satisfies Assumption 4. For every t P N, Wptqpδq is a bounded
continuous function of δ.

Proof. Use mathematical induction. For the base step, equation (1) implies that Wp1qpδq, as
a constant function, is a bounded continuous function of δ. For the inductive step, suppose
for every round 1, . . . , t from the end, the claim is true. Then using the fact that h1 is a
bounded continuous map together with the inductive hypothesis for round t and the preser-
vation of continuity by the product and the composition operations in equation (2) implies
the claim is true for round t` 1 from the end as well. Q.E.D.

Lemma 7, has an immediate consequence:

Corollary 1. Suppose G satisfies Assumption 4. Then for every t P N, limδÑ1W
ptqpδq

exists and is equal to Wptqp1q.

With discounting and deadline frictions parameterized as the pair pδ, kq of the common
discount factor and the bargaining horizon, we introduce the notion of

Definition 1. (Noncooperative Raiffa Solution). Define the (δ-discounted, k-period) non-
cooperative Raiffa solution with respect to the bargaining model EMpG, δ, kq of the strategic

5In Appendix B, we say more about setting up this payoff environment, including stating Assumption 4,
in the context of Rubinstein bargaining model with time preference.
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game G with status quo point 0 to be the unique SPE value Wk`1pδq of EMpG, δ, kq.

Definition 1 is justified because as the discounting and then the deadline frictions vanish in
the bargaining game EMpG, δ, kq, the noncooperative Raiffa solution Wk`1pδq converges to
Raiffa’s Bargaining Solution RpF ,0q. Formally, we have

lim
kÑ8

lim
δÑ1

Wpkq
pδq “ lim

kÑ8
Wpkq

p1q “: RpF ,0q

where the first equality is due to Lemma 7.

Define W pδq :“ limtÑ8Wptqpδq to be the limit6 of the unique SPE values of EMpG, δ, kq as
the deadline frictions vanish in the model. Then taking limits as t Ñ 8 in equation (2)
implies

W pδq “
1

2

”´

h1
`

δW2pδq
˘

, δW2pδq
¯

`

´

δW1pδq, h2
`

δW1pδq
˘

¯ı

(3)

Let Vpδq be the unique SPE value of the Rubinstein bargaining model EtppG, δq with time
preference studied in Appendix B. Then Lemma 8 relates the limit (as the deadline frictions
vanish) SPE values of EMpG, δ, kq to the SPE values of EtppG, δq.

Lemma 8. Suppose G satisfies Assumption 4. If W pδq is well defined, then W pδq “ Vpδq.

Proof. follows from equation (3) and Proposition B.2. Q.E.D.

Lemma 9 records the Lipschitz continuity property of the functions describing the efficient
boundary of the strategic game. This simple result will be used in the key technical result
of this section - Lemma 10. It is an easy consequence of Proposition L which appears as
Proposition 2.2.3 in Cobzaş et al. (2019).

Proposition L. Let f : ra, bs ÞÑ R be continuous. If f 1´pxq exists and is bounded on pa, bs
then f is Lipschitz on ra, bs with Lipschitz constant Lpfq “ supt|f 1´pxq| : x P pa, bsu. A
similar result holds for f 1`pxq on ra, bq.

Lemma 9. Suppose G satisfies Assumption 4. Then the functions h1 and h2 are bounded
and Lipschitz continuous on their respective domains r0,M2BFs and r0,M1BFs.

Proof. Boundedness is immediate from definitions. Lipschitz continuity follows from Propo-
sition L. Q.E.D.

6Corollary 2 of Lemma 10, which is proved later, implies that W pδq is well defined for all sufficiently
high δ.
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EMpδk´1G, δ, kq

0.5

0.5

1

σ1

2

σ2

2

pδk´1u1pσ1q, δ
k´1u2pσ1qq

A

p0, 0q
R

1

pδk´1u1pσ2q, δ
k´1u2pσ2qq

A

p0, 0q
R

EMpδt´1G, δ, kq

0.5

0.5

1

σ1

2

σ2

2

pδt´1u1pσ1q, δ
t´1u2pσ1qq

A

EMpδtG, δ, kq
R

1

pδt´1u1pσ2q, δ
t´1u2pσ2qq

A

EMpδtG, δ, kq
R

Figure 5: The top panel is the k-th (last) round and the bottom panel is the recursive schema
of Myerson (1991) Finite Horizon k-round Bargaining Game EMpG, δ, kq when players have
discounted time preferences. For any date 1 ď t ă k, δtG is the strategic game xN,A, δtuy.
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Let Lph1q and Lph2q be the Lipschitz constants of the mappings h1 and h2 respectively.
We introduce the assumption that the strategic game G has a linear efficient boundary as

Assumption 1. (Linear efficient boundary). Lph1qLph2q “ 1.

It is well known in the literature that if G satisfies Assumption 1 and Assumption 4. Then
Raiffa’s Bargaining Solution RpF ,dq coincides with Nash Bargaining Solution NpF ,dq.
We now state and prove the key technical result of this section - as the bargaining model
EMpG, δ, kq becomes frictionless, the SPE value functions (as functions of δ) of the model
get closer and closer in the sup-metric near δ “ 1.

Lemma 10. Suppose G satisfies Assumption 4. Then there exists δ̂ P p0, 1q such that
tWptqutě1 is a Cauchy sequence of functions from rδ̂, 1s to r0,M1pBFqs ˆ r0,M2pBFqs in the
metric d8 of uniform convergence.

Proof. We will establish that the lemma holds for both sequences of coordinate functions
tW

ptq
1 utě1 and tW

ptq
2 utě1. For t, s P N such that t ą s, define δ̂pt, sq :“ argmaxδPr0,1s |W

pt`1q
1 pδq´

W
ps`1q
1 pδq|; or equivalently by d8pW

pt`1q
1 ,W

ps`1q
1 q “ |W

pt`1q
1 pδ̂pt, sqq ´W

ps`1q
1 pδ̂pt, sqq|. For

T P N, define δ̂T :“ suptąsěT δ̂pt, sq.

Suppose it is the case that for every T P N, we have δ̂T “ 1. This means for every n P N,
there exist tn ą sn ě n such that δ̂ptn, snq ě 1´ 1

2n
; or equivalently,

lim
nÑ8; tnąsněn

δ̂ptn, snq “ 1 (4)

Then

lim
t,sÑ8

d8pW
pt`1q
1 ,W

ps`1q
1 q “ lim

t,sÑ8
|W

pt`1q
1 pδ̂pt, sqq ´W

ps`1q
1 pδ̂pt, sqq|

“ lim
nÑ8; tnąsněn

|W
ptn`1q
1 pδ̂ptn, snqq ´W

psn`1q
1 pδ̂ptn, snqq|

“ lim
nÑ8; tnąsněn

|W
ptn`1q
1 p1q ´W

psn`1q
1 p1q| (5)

“ 0 (6)

where (5) follows because of (4); and, (6) follows because tW ptq
1 p1qut, as a sequence of real

numbers that converges (Myerson (1991)) to RBS1pF ,0q, must be Cauchy. This gives the
conclusion of the lemma in the present case.

Otherwise, there exists a T P N such that δ̂T ă 1. For arbitrary t and s such that t ą s, using
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the recursive definition (2), write the point-wise difference between the functions W pt`1q
1 and

W
ps`1q
1 as

|W
pt`1q
1 pδq ´W

ps`1q
1 pδq| “

1

2

ˇ

ˇh1
`

δW
ptq
2 pδq

˘

´ h1
`

δW
psq
2 pδq

˘
ˇ

ˇ`
δ

2
|W

ptq
1 pδq ´W

psq
1 pδq|

ď
δLph1q

2
|W

ptq
2 pδq ´W

psq
2 pδq| `

δ

2
|W

ptq
1 pδq ´W

psq
1 pδq| (7)

ď
δLph1q

2
d8pW

ptq
2 ,W

psq
2 q `

1

2
d8pW

ptq
1 ,W

psq
1 q (8)

where (7) follows from Lemma 9. This gives the estimate

d8pW
pt`1q
1 ,W

ps`1q
1 q “ |W

pt`1q
1 pδ̂pt, sqq ´W

ps`1q
1 pδ̂pt, sqq|

ď
δ̂pt, sqLph1q

2
d8pW

ptq
2 ,W

psq
2 q `

1

2
d8pW

ptq
1 ,W

psq
1 q pusing (8)q (9)

ď
δ̂TLph1q

2
d8pW

ptq
2 ,W

psq
2 q `

1

2
d8pW

ptq
1 ,W

psq
1 q (10)

Arguing on parallel lines, we obtain the estimate

d8pW
pt`1q
2 ,W

ps`1q
2 q ď

1

2
d8pW

ptq
1 ,W

psq
1 q `

δ̂TLph2q

2
d8pW

ptq
2 ,W

psq
2 q (11)

From (10) and (11), we obtain

lim
t,sÑ8

d8pW
ptq
1 ,W

psq
1 q ď δ̂TLph1q lim

t,sÑ8
d8pW

ptq
2 ,W

psq
2 q (12)

lim
t,sÑ8

d8pW
ptq
2 ,W

psq
2 q ď δ̂TLph2q lim

t,sÑ8
d8pW

ptq
1 ,W

psq
1 q (13)

(12) and (13) give the conclusion

p1´ δ̂2TLph1qLph2qq lim
t,sÑ8

d8pW
ptq
1 ,W

psq
1 q ď 0 (14)

p1´ δ̂2TLph1qLph2qq lim
t,sÑ8

d8pW
ptq
2 ,W

psq
2 q ď 0 (15)

Consider two cases. For the first case, suppose NpF ,0q is not an extreme point of F .
Under the hypotheses of the present lemma, by Lemma 8 and Proposition B.4, there exists
δ̂ P p0, 1q such that for every δ ě δ̂, there exists Tδ P N such that for every t ě Tδ, the
points ph1pδW

ptq
2 pδqq, δW

ptq
2 pδqq and pδW

ptq
1 pδq, h2pδW

ptq
1 pδqqq lie on the same linear edge of

the efficient boundary BF (See the left panel in Figure 6). This implies Assumption 1 is
satisfied for the mappings h1 when restricted to domain rδW ptq

2 pδq, h2pδW
ptq
1 pδqqs and h2 when
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NBS

pd1, d2q
ph1pd2q, d2q

pd1, h2pd1qq

NBSθ2

θ1

θ2

pd1, d2q
ph1pd2q, d2q

pd1, h2pd1qq

Figure 6: Left Panel: NBS is at a point on the edge of the game polytope. For the given
disagreement point d, the mappings h1 and h2 correspond to the same edge of the polytope.
Right Panel: NBS is an extreme point of the game polytope. For the given disagreement
point d, the mappings h1 and h2 correspond to the adjacent edges of the polytope that meet
at the NBS.

restricted to domain rδW ptq
1 pδq, h1pδW

ptq
2 pδqqs with δ “ δ̂ and t “ Tδ̂. Using this in (14) and

(15) gives the conclusion of Lemma 10 under the first case.

For the second case, supposeNpF ,0q is an extreme point of F . In this case, by Lemma 8 and
Proposition B.4 again, there exists δ̂ P p0, 1q such that for every δ ě δ̂, there exists Tδ P N
such that for every t ě Tδ, the points ph1pδW

ptq
2 pδqq, δW

ptq
2 pδqq and pδW

ptq
1 pδq, h2pδW

ptq
1 pδqqq

now lie on those adjacent linear edges of the efficient boundary BF , which meet at the given
extreme point. This again means that the relevant mappings are given by h1 when restricted
to domain rδW ptq

2 pδq,NBS2pF ,0qs and h2 when restricted to domain rδW ptq
1 pδq,NBS1pF ,0qs

with δ “ δ̂ and t “ Tδ̂. Guided by the right panel in Figure 6, the product of the involved
Lipschitz constants of these mappings with restricted domains is

tan θ2 tan θ1 ă tan θ2 tan p900 ´ θ2q “ 1 for any θ2 P p0, 900q (16)

where the inequality in (16) is because θ1 ă 900 ´ θ2 owing to the shape of the efficient
boundary BF near an extreme point which must look like as shown in the right panel in
Figure 6; and the equality in (16) is because in the trigonometric identity

tan pθ2 ` p900 ´ θ2qq “
tan θ2 ` tan p900 ´ θ2q

1´ tan θ2 tan p900 ´ θ2q

17



the left hand side is 8 while the numerator of the fraction on the right hand side is finite and
positive. (16) says that for mappings h1 and h2 with the aforementioned restricted domains,
we have the product of their Lipschitz constants Lph1qLph2q ă 1. Using this in (14) and (15)
gives the conclusion of Lemma 10 under the second case as well. Q.E.D.

Since uniform convergence implies pointwise convergence, Lemma 10 has the following easy
consequence:

Corollary 2. Suppose G satisfies Assumption 4. Then there exists δ̂ P p0, 1q such that
tWptqutě1 is a sequence of functions that converges pointwise on rδ̂, 1s.

Note that Corollary 1 implies that for every t, limδÑ1W
ptqpδq exists and Corollary 2 implies

that for all δ sufficiently high, limtÑ8Wptqpδq exists. We now have the main result in this
section.

Theorem 1. Suppose G satisfies Assumption 4. Then as the bargaining frictions disappear,
the noncooperative Raiffa solution Wptqpδq with respect to EMpG, δ, kq converges to the Nash
Bargaining Solution NpF ,0q.

Proof. We have

lim
tÑ8

lim
δÑ1

Wptq
pδq “ lim

δÑ1
lim
tÑ8

Wptq
pδq pWptq converges uniformly near 1 by Lemma 10q

“ lim
δÑ1

W pδq pBy definition of W pδqq

“ lim
δÑ1

Vpδq pBy Lemma 8q

“ NpF ,0q pBy Proposition B.4q

Q.E.D.

6 A bargaining model for the infinitely repeated game

with a status quo

In this section, which is an interlude to the main theme, we study a random-offer Rubinstein
style model but for an infinitely repeated game with an initial status quo contract. We have
two objectives. One, to record a convergence-to-Nash result, which will be called in the proof
of our main result, Theorem 2; and two, to examine the link between Raiffa’s mediation
interpretation of his solution with the strategic aspects of the bargaining situation. Since
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this latter objective is somewhat tangential to our main theme, we relegate it to Appendix
C.

Let G “ xt1, 2u, pAi, uiqi“1,2y be a strategic game. Let σ0 P ∆pAq be exogenously given
and to be interpreted as the initial contractual state. Let u “ pu1, u2q be the profile of
representing vNM utility functions of the players. We refer to the extensive form bargaining
model with flow payoffs that we are about to describe as E pG8, σ0, δq.

Dates. The model has a discrete set of dates t “ 1, 2, . . .. The time between date t and date
t` 1 is referred to as period t.

States. Specify the state space for the model as the set of feasible contracts ∆pAq, and
σ0 P ∆pAq as the initial state of the model. Specify any efficient contract - that is, any
contract σ P ∆pAq such that upσq P BF - as a stopped state for the model. A state that is
not a stopped state of the model is an active state.

Actions. Actions are available to players only in active states. At any date at which the
model is in an active state, a player is randomly chosen with probability 1/2 to be the
proposer. The other player becomes the responder. The date-invariant set of feasible actions
for a player in the role of a proposer is the set ∆pAq of feasible contracts in G. The date-
invariant set of feasible actions for a player in the role of a responder is tA,Ru denoting
‘accept the proposed contract’ and ‘reject the proposed contract’ respectively.

State Transitions. Consider the model in an active state σ at some date t. If a different state
σ1 is proposed and accepted, then the state of the model changes to σ1 at the end of period
t. Otherwise, the model stays in state σ. Stopped states are absorbing.

Payoffs. Every period, players realize their payoffs at the end when actions have been taken
and state transitions (if any) have been effected. The payoff vector vt realized by players in
period t when the model is in an active state σt, the offer made by the proposer is σ1t, and
the response of the other player is rt is given by

vtpσt, σ
1
t, rtq “

$

&

%

upσtq if rt “ R

upσ1tq if rt “ A
for σt active ; vtpσq “ upσq for σ stopped

The associated bargaining problem for the strategic bargaining model E pG8, σ0, δq is given
by pF ,upσ0qq. We maintain the following

Assumption 2. upσ0qq ěmpBFq

Stationary Markov Strategies A deterministic stationary Markov bargaining strategy bi for
player i in the model is a pair pfi, riq of offer and response strategies that in any period t
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make reference only to the current state σt and in doing so, do not depend on the date t.
Player i’s offer strategy is a state contingent rule for making offers and formally specified as
a function fi : ∆pAq ÞÑ ∆pAq. fipσq is the offer made by player i as a proposer when the
state is σ irrespective of what date it is. Player i’s response strategy is a state contingent
rule for responding to offers and formally specified as a function ri : ∆pAqˆ∆pAq ÞÑ tA,Ru.
ripσ, σ

1q is the binary response of player i as a responder when the state is σ and the offer
made to her is σ1 irrespective of what date it is.

Solution Concept. A profile of stationary Markov bargaining strategies b “ pb1, b2q is a
subgame perfect equilibrium (SMPE) of the bargaining model if they constitute a Nash
equilibrium in every state of the model.

Let Vpσ,b; δq “ pV1pσ,b; δq, V2pσ,b; δqq P R2 be the value vector in state σ of the bargaining
strategy profile b when the common discount factor is δ. A value function for the model is a
function W : ∆pAq ÞÑ F that maps model states to a pair of feasible values for the players
in the underlying game G. Let V be the space of value functions for the model. We now
introduce two distinguished value functions in V and then an operator on V .

Let NpF , ‚q : ∆pAq ÞÑ F be the Nash bargaining solution function that for any state σ, gives
the Nash bargaining solution of the bargaining problem pF ,upσqq. Formally, it is defined
by

NpF , σq “ argmax
uPF

pu1 ´ u1pσqqpu2 ´ u2pσqq (17)

Define the Raiffa operator R : V ÞÑ V on the space of value functions of the model so that
for any value function V P V and at any state σ, it takes the value

RVpσq “
1

2

”

`

h1pV2pσqq, V2pσq
˘

`
`

V1pσq, h2pV1pσqq
˘

ı

(18)

Note that Raiffa’s bargaining solution from a status quo contract σ is the iterative limit
under the Raiffa operator of the vNM payoffs in state σ. In other words, RBSpF , σq :“

limnÑ8Rnupσq.

Proposition 1 describes the stationary Markov bargaining equilibria in the bargaining model
with flow payoffs in terms of strategy optimality and value optimality in a manner that
parallels Proposition A.1 for the risk-of-breakdown model. It follows from standard dynamic
programming arguments applied to the given model. In the statement for value optimality,
B “ pB1,B2q is the Bellman operator on V .

Proposition 1. (Stationary Markov Perfect Equilibria). A profile of stationary Markov
bargaining strategies b “ pb1, b2q where bi “ pfi, riq for i “ 1, 2 constitutes a subgame-perfect

20



equilibrium of the bargaining model E pG8, σ0, δq if and only if

(i) (Strategy Optimality). Given the associated pair of value functions V1p‚,b; δq : ∆pAq ÞÑ R
and V2p‚,b; δq : ∆pAq ÞÑ R, we have
(a) (Response Optimality). For every player i “ 1, 2, for every state σ, and for every offer
σ1

ripσ, σ
1
q “ A if and only if p1´ δquipσ1q ` δVipσ1,b; δq ě p1´ δquipσq ` δVipσ,b; δq

(b) (Offer Optimality). For every state σ, player 1’s offer f1pσq and player 2’s offer f2pσq
are such that

p1´ δqu1pf1pσqq ` δV1pf1pσq,b; δq “ h1
`

p1´ δqu2pσq ` δV2pσ,b; δq
˘

(19)

p1´ δqu2pf2pσqq ` δV2pf2pσq,b; δq “ h2
`

p1´ δqu1pσq ` δV1pσ,b; δq
˘

(20)

(ii) (Value Optimality). The associated pair of value functions V1p‚,b; δq and V2p‚,b; δq

satisfy the Bellman equations of optimality BpVq “ V. In other words, for every state σ,

V1pσ; δq “ pB1Vqpσq :“
h1
`

p1´ δqu2pσq ` δV2pσ; δq
˘

` p1´ δqu1pσq ` δV1pσ; δq

2
(21)

V2pσ; δq “ pB2Vqpσq :“
p1´ δqu2pσq ` δV2pσ; δq ` h2

`

p1´ δqu1pσq ` δV1pσ; δq
˘

2
(22)

Proposition 2. (Uniqueness and Convergence of SMPE Value Functions). Suppose G sat-
isfies Assumption 2. For any δ P r0, 1q, the Bellman equations of optimality BpVq “

V, specified in Proposition 1, have a unique solution Vp‚; δq : ∆pAq ÞÑ F . Moreover,
limδÑ1Vp‚; δq “ NpF , ‚q and Vp‚; 0q “ Rup‚q.

Proof. For every fixed δ and every fixed state σ, the Bellman equations (21) and (22) are
mathematically equivalent to the Bellman equations in the risk-of-breakdown model. Propo-
sition A.2 in that model, therefore, implies that (21) and (22) have a unique solution
Wpσ; δq “ pW1pσ; δq,W2pσ; δqq P F . For every fixed δ, construct the function Vp‚; δq by
setting Vpσ; δq “ Wpσ; δq for every state σ. The convergence conclusion follows because
Proposition A.4 in the risk-of-breakdown model implies Vp‚; δq converges pointwise in σ to
NpF , ‚q as δ Ñ 1. The last assertion follows from the Bellman equations at δ “ 0 and the
definition of Raiffa operator in (18). Q.E.D.
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Proposition 2 says that in the bargaining model with flow payoffs, the optimal value function
is the Raiffa value function when players are impatient. However, when they are arbitrarily
patient, the optimal value function approaches the Nash bargaining solution function.

7 A bargaining model for the finitely repeated game with

a status quo

Let G “ xt1, 2u, pAi, uiqi“1,2y be the underlying strategic game. Let σ0 be an exogenous
initial contract. Let u “ pu1, u2q be the profile of representing vNM utility functions of
the players. We refer to the bargaining model with per-period payoffs that we are about to
describe as E pGk, σ0, δq.

Dates. The model has a finite set of dates t “ k` 1, . . . , 1 with k P N. The labeling of dates
is backwards from the terminal date. The time between date t` 1 and date t is referred to
as period t. So the model has k periods.

States. Specify the state space for the model as the set of feasible contracts ∆pAq, and σ0 as
the initial state of the model. Specify any efficient contract - that is, any contract σ P ∆pAq
such that upσq P BF - as a stopped state for the model. A state that is not a stopped state
of the model is an active state.

Actions. Actions are available to players only in active states and at non-terminal dates
t ‰ 1. At any non-terminal date where the model is in an active state, a player is randomly
chosen with probability 1/2 to be the proposer. The other player becomes the responder.
The date-invariant set of feasible actions for a player in the role of a proposer is the set ∆pAq
of feasible contracts in G. The date-invariant set of feasible actions for a player in the role
of a responder is tA,Ru denoting ‘accept the proposed contract’ and ‘reject the proposed
contract’ respectively.

State Transitions. Consider the model in an active state σ at some date t. If a different state
σ1 is proposed and accepted, then the state of the model changes to σ1 at the end of period
t. Otherwise, the model stays in state σ. Stopped states are absorbing.

Payoffs. Every period, players realize their payoffs at the end when actions have been taken
and state transitions (if any) have been effected. The payoff vector vt realized by players in
period t when the model is in an active state σt, the offer made by the proposer is σ1t, and
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the response of the other player is rt is given by

vtpσt, σ
1
t, rtq “

$

&

%

upσtq if rt “ R

upσ1tq if rt “ A
for σt active ; vtpσq “ upσq for σ stopped

Construct the associated Nash bargaining problem pF ,upσ0qq so that it satisfies Assumption
2.

Markov Strategies. A Markov bargaining strategy bi for player i in the model is a sequence
pf ti , r

t
iq
k
t“1 of offer and response strategies that in any period t make reference only to the

current state σt. Player i’s offer strategy at date t is a state contingent rule for making
offers and formally specified as a function f ti : ∆pAq ÞÑ ∆pAq. f ti pσq is the offer made
by player i as a proposer when the state is σ at date t. Player i’s response strategy at
date t is a state contingent rule for responding to offers and formally specified as a function
rti : ∆pAq ˆ∆pAq ÞÑ tA,Ru. rtipσ, σ1q is the binary response of player i as a responder when
the state is σ and the offer made to her is σ1 at date t.

Solution Concept. A profile of Markov bargaining strategies b “ pb1, b2q is a subgame perfect
equilibrium (MPE) of the bargaining model if they constitute a Nash equilibrium at every
date in every state of the model.

Let Vtpσ,b; δq “ pV t
1 pσ,b; δq, V t

2 pσ,b; δqq P R2 be the value vector in state σ at date t of the
bargaining strategy profile b when the common discount factor is δ. A date t value function
for the model is a function Wt : ∆pAq ÞÑ F that maps model states to a pair of feasible
values for the players in the underlying game G.

Proposition 3 describes the Markov bargaining equilibria in the finitely repeated game model
in terms of strategy optimality and value optimality in a manner that parallels Proposition
A.1 for the risk-of-breakdown model. It follows from standard dynamic programming argu-
ments applied to the given model.

Proposition 3. (Markov Perfect Equilibria). A profile of Markov bargaining strategies
b “ pb1, b2q where bi “ pf ti , r

t
iq
k`1
t“2 for i “ 1, 2 constitutes a subgame-perfect equilibrium

of the bargaining model E pGk, σ0, δq if and only if

(i) (Strategy Optimality). Given the associated sequence of value functions V t
1 p‚,b; δq :

∆pAq ÞÑ R and V t
2 p‚,b; δq : ∆pAq ÞÑ R for every date t “ 1, . . . , k ` 1, we have

(a) (Response Optimality). For every player i “ 1, 2, for every t ‰ k ` 1, for every state σ,
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and for every offer σ1

rt`1i pσ, σ1q “ A if and only if p1´ δquipσ1q ` δV t
i pσ

1,b; δq ě p1´ δquipσq ` δV
t
i pσ,b; δq

(b) (Offer Optimality). For every t ‰ k ` 1, and for every state σ, player 1’s offer f t`11 pσq

and player 2’s offer f t`12 pσq are such that

p1´ δqu1pf
t`1
1 pσqq ` δV t

1 pf
t`1
1 pσq,b; δq “ h1

`

p1´ δqu2pσq ` δV
t
2 pσ,b; δq

˘

(23)

p1´ δqu2pf
t`1
2 pσqq ` δV t

2 pf
t`1
2 pσq,b; δq “ h2

`

p1´ δqu1pσq ` δV
t
1 pσ,b; δq

˘

(24)

(ii) (Value Optimality). The sequence of associated value functions pV t
1 p‚,b; δq, V t

2 p‚,b; δqqk`1t“1

satisfy the Bellman equations of optimality at every date and in every state. In other words,
for every t ‰ k ` 1, and for every state σ,

V t`1
1 pσ; δq “

h1
`

p1´ δqu2pσq ` δV
t
2 pσ; δq

˘

` p1´ δqu1pσq ` δV
t
1 pσ; δq

2
(25)

V t`1
2 pσ; δq “

p1´ δqu2pσq ` δV
t
2 pσ; δq ` h2

`

p1´ δqu1pσq ` δV
t
1 pσ; δq

˘

2
(26)

V1
pσ; δq “ upσq pBoundary Conditionq (27)

Proposition 4. (Uniqueness of Subgame Perfect Equilibrium Values). All Markov per-
fect equilibria (MPE) of the bargaining model E pGk, σ0, δq share the same date sequence
pVtp‚; δqqk`1t“1 of continuation value functions. Moreover, pVtp‚; δqqk`1t“1 is also the unique
date sequence of continuation value functions shared by all subgame perfect equilibria (SPE)
of the model.

Proof. The uniqueness of MPE value function follows by using mathematical induction on
the date variable (backwards from the terminal date) in the value optimality conditions of
Proposition 3.

For the second statement of the proposition, first note that the SPE of the model are charac-
terized by a proposition analogous to Proposition 3 which characterizes the MPE, but with
the modification that the strategies and their associated value functions may potentially be
history dependent. Nevertheless, the SPE value functions must satisfy the potentially his-
tory dependent versions7 of the Bellman equations of optimality at every date and for every
history, including the boundary conditions at the terminal date for every history.

7For reasons of economizing space, we avoid writing these formally because we would need to develop
notation for histories and history dependent strategies and value functions but without much added benefit
in terms of results.
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Now use mathematical induction on the date variable (backwards from the terminal date).
For the base step, the value functions of all SPEs must satisfy the boundary condition at
the terminal date for every history. Consequently, their continuation value for t “ 1 is the
same - upσq - which depends on the history only through the current state σ. For the in-
ductive step, suppose all SPEs share the same date sequence of continuation value functions
pVnp‚; δqqtn“1, all of which depend on history only through the current state σ. Then the
date t ` 1 continuation value functions of all SPEs must satisfy the date t ` 1 Bellman
equations - the potentially history dependent versions of (25) and (26). Now on any history
leading upto date t ` 1 and ending in state σ, the expressions on the right side of these
Bellman equations evaluate uniquely and by induction hypothesis, depend on the history
only through the current state σ. This implies all SPEs share the same date t` 1 continua-
tion value function which depends on the history only through the current state. The SPE
strategies then inherit the Markovian nature of the SPE value functions. Q.E.D.

With discounting and deadline frictions parameterized as the pair pδ, kq, we define

Definition 2. (Noncooperative Raiffa Solution). Define the (δ-discounted, k-period) nonco-
operative Raiffa solution with respect to the bargaining model E pGk, σ0, δq, of the strategic
game G with initial contractual state σ0, to be the SPE equilibrium value Vk`1pσ0; δq of
E pGk, σ0, δq.

Example 1. Suppose we have a strategic game G for which F “ tu “ pu1, u2q P R2
` :

u1`2u2 ď 12, 2u1`u2 ď 12u; and the initial contractual state σ0 is such that upσ0q “ p2, 1q.
For this bargaining problem pF ,upσ0qq, the Nash bargaining solution is p4, 4q and the Kalai
Smorodinsky solution is p4.2275, 3.545q. We apply Proposition 3 to compute the 3-period
noncooperative Raiffa solution of the bargaining model E pG3, σ0, δq with initial contractual
state σ0.

Boundary Condition. For this example, we have the boundary condition (27), namely
V1pσ0; δq “ upσ0q “ p2, 1q.

First Period. In the first period (t=2), suppose the prevailing state is σ. Player 1, when
chosen as a proposer, chooses an offer f 2

1 pσq that satisfies the following two conditions: (a)
makes player 2 (the responder) indifferent between accepting and rejecting the offer; and (b)
is optimal for player 1 subject to acceptance. Using response optimality and offer optimality
in Proposition 3, these conditions are formally expressed as

p1´ δqu2pf
2
1 pσqq ` δV

1
2 pf

2
1 pσq; δq “ p1´ δqu2pσq ` δV

1
2 pσ; δq (28)

p1´ δqu1pf
2
1 pσqq ` δV

1
1 pf

2
1 pσq; δq “ h1pp1´ δqu2pσq ` δV

1
2 pσ; δqq (29)

25



Using the boundary condition (27), conditions (28) and (29) simplify to upf 2
1 pσqq “ ph1pu2pσqq, u2pσqq.

Similarly, player 2, when chosen as a proposer, chooses an offer f 2
2 pσq that satisfies upf 2

2 pσqq “

pu1pσq, h2pu1pσqqq. Using value optimality in Proposition 3, the continuation value vector
of the model from date t “ 2 onwards in state σ is given by

V2
pσ; δq “

´u1pf
2
1 pσqq ` u1pf

2
2 pσqq

2
,
u2pf

2
1 pσqq ` u2pf

2
2 pσ

0qq

2

¯

“

´h1pu2pσqq ` u1pσq

2
,
u2pσq ` h2pu1pσqq

2

¯

(30)

Computing this in the context of the present example gives

V2
pσ0; δq “

´

12´u2pσ0q

2
` u1pσ

0q

2
,
u2pσ

0q `
12´u1pσ0q

2

2

¯

“ p3.75, 3q (31)

Second Period. Repeat the argument for the second period. In period 2 (t=3), suppose
the prevailing state is σ. Player 1, when chosen as a proposer, chooses an offer f 3

1 pσq that
satisfies

p1´ δqu2pf
3
1 pσqq ` δV

2
2 pf

3
1 pσq; δq “ p1´ δqu2pσq ` δV

2
2 pσ; δq (32)

p1´ δqu1pf
3
1 pσqq ` δV

2
1 pf

3
1 pσq; δq “ h1pp1´ δqu2pσq ` δV

2
2 pσ; δqq (33)

Similarly, Player 2, when chosen as a proposer, chooses an offer f 3
2 pσq that satisfies

p1´ δqu1pf
3
2 pσqq ` δV

1
2 pf

3
2 pσq; δq “ p1´ δqu1pσq ` δV

2
1 pσ; δq (34)

p1´ δqu2pf
3
2 pσqq ` δV

2
2 pf

3
2 pσq; δq “ h2pp1´ δqu2pσq ` δV

2
1 pσ; δqq (35)

Note that the the prevailing contract σ0 at the current date t “ 3 determines the future
contract (either f 3

1 pσq or f 3
2 pσq) at date t “ 2 by determining the continuation value of

rejection in the current period for both players. This continuation value of rejection is a
weighted average of payoffs accruing to players from two channels - the current period vNM
payoff from the prevailing contract σ, and the future (date 2 onwards) continuation value
V2pσ; δq of the prevailing contract σ. The continuation value vector of the model from date
t “ 3 onwards in state σ is then given by

V3
pσ; δq “ pV 3

1 pσ; δq, V 3
2 pσ; δqq; where (36)

V 3
1 pσ; δq “

p1´ δqu1pf
3
1 pσqq ` δV

2
1 pf

3
1 pσq; δq ` p1´ δqu1pf

3
2 pσqq ` δV

2
1 pf

3
2 pσq; δq

2
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“
h1pp1´ δqu2pσq ` δV

2
2 pσ; δqq ` p1´ δqu1pσq ` δV

2
1 pσ; δq

2

V 3
2 pσ; δq “

p1´ δqu2pf
3
1 pσqq ` δV

2
2 pf

3
1 pσq; δq ` p1´ δqu2pf

3
2 pσqq ` δV

2
2 pf

3
2 pσq; δq

2

“
p1´ δqu2pσq ` δV

2
2 pσ; δq ` h2pp1´ δqu1pσq ` δV

2
1 pσ; δqq

2
(37)

Computing these in the context of the present example gives

V 3
1 pσ

0; δq “

12´rp1´δqu2pσ0q`δV 2
2 pσ

0;δqs

2
` p1´ δqu1pσ

0q ` δV 2
1 pσ

0; δq

2
“ 3.75` 0.375δ (38)

V 3
2 pσ

0; δq “
p1´ δqu2pσ

0q ` δV 2
2 pσ

0; δq `
12´rp1´δqu1pσ0q`δV 2

1 pσ
0;δqqs

2

2
“ 3` 0.5625δ (39)

V3
pσ0; δq “ p3.75` 0.375δ, 3` 0.5625δq (40)

Third Period. In the third period, V3pσ0; δq constitutes the status quo (in payoff terms). It
turns out that the mapping h2 describing efficient boundary changes depending on δ. For
δ ă 2{3, h2pu1q “ 1

2
p12´u1q; while for δ ě 2{3, h2pu1q “ 12´2u1. By reasoning in a manner

similar to that in second period, we compute that for δ ě 2{3,

V 4
1 pσ

0; δq “

12´rp1´δqu2pσ0q`δV 3
2 pσ

0;δqs

2
` p1´ δqu1pσ

0q ` δV 3
1 pσ

0; δq

2
“ 3.75` 0.375δ ` 0.046875δ2

(41)

V 4
2 pσ

0; δq “
p1´ δqu2pσ

0q ` δV 3
2 pσ

0; δq ` 12´ 2rp1´ δqu1pσ
0q ` δV 3

1 pσ
0; δqqs

2
“ 4.5´ 0.75δ ´ 0.09375δ2

(42)

V4
pσ0; δq “ p3.75` 0.375δ ` 0.046875δ2, 4.5´ 0.75δ ´ 0.09375δ2q (43)

For δ ě 2{3, V4pσ0; δq is the 3-period noncooperative Raiffa solution of the bargaining model
for the present example. Note that since 2V 4

1 pσ
0; δq ` V 4

2 pσ
0; δq “ 12, V4pσ0; δq lies on the

efficient boundary, and limδÑ1V
4pσ0; δq “ p4.171875, 3.65625q.

Letting Rk “ limδÑ1V
kpσ0; δq for every k, we get the Raiffa negotiation curve as the piece-

wise linear curve formed by joining the payoff points in the finite Raiffa sequence, given
by

R1
“ p2, 1q, R2

“ p3.75, 3q, R3
“ p4.125, 3.5625q, R4

“ p4.171875, 3.65625q

This Raiffa negotiation curve is shown in Figure 3 in section 4. Note that Raiffa’s bargaining
solution R4 for this example reflects the asymmetry in the initial status quo, while the Nash
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bargaining solution does not.

The equilibrium path from σ0 will feature contracts proposed every period by players ran-
domly chosen as proposers. The solution V4pσ0; δq is the average of continuation values of
these paths starting from σ0 in period 1. In this example, the three steps of the Raiffa ne-
gotiation curve appear as a sequence of recursively computed threat points limδÑ1V

1pσ0; δq,
limδÑ1V

2pσ0; δq, and limδÑ1V
3pσ0; δq, leading to Raiffa’s solution R4 “ limδÑ1V

4pσ0; δq as
the equilibrium bargaining value.

Example 2. Suppose we have the same F as in Example 1; but the initial contractual state
σ0 is such that upσ0q “ p1, 1q. For this bargaining problem pF ,upσ0qq, the Nash bargaining
solution and the Kalai Smorodinsky solution coincide and is the point p4, 4q on the efficient
boundary. Using the same reasoning as in Example 1, we compute

V1
pσ0; δq “ p1, 1q

V2
pσ0; δq “ p3.25, 3.25q

V3
pσ0; δq “ p3.25` 0.5625δ, 3.25` 0.5625δq

V4
pσ0; δq “ p3.25` 0.5625δ ` 0.140625δ2, 3.25` 0.5625δ ` 0.140625δ2q

and so on ...

In this example, all the k- period noncooperative Raiffa solutions lie on the same line segment
joining the initial status quo p1, 1q to the extreme point p4, 4q on the efficient boundary.
Moreover, unlike Example 1, for no finite k, does Vkpσ0; δq lie on the efficient boundary. It
is also clear that limδÑ1V

kpσ0; δq “ p4, 4q, which is also the Nash bargaining solution and
the Kalai Smorodinsky solution for the bargaining problem.

The Raiffa negotiation curve is a straight line joining the payoff points in the infinite Raiffa
sequence, whose first four points are given by

R1
“ p1, 1q, R2

“ p3.25, 3.25q, R3
“ p3.8125, 3.8125q, R4

“ p3.953125, 3.953125q

This linear Raiffa negotiation curve comprising of infinite steps for this example is shown in
Figure 4 in section 4.

Theorem 2. (Convergence of Noncooperative Raiffa Solution to Nash Bargaining Solution).
As the deadline frictions and then the discounting frictions disappear, the noncooperative
Raiffa solution with respect to the bargaining model E pGk, σ0, δq converges to the Nash bar-
gaining solution of the bargaining problem pF ,upσ0qq. Formally, limδÑ1 limkÑ8Vk`1pσ0; δq “

NpF , σ0q.
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Proof. As k Ñ 8, Proposition 3 in the bargaining model E pGk, σ0, δq coincides with Propo-
sition 1 in the bargaining model E pG8, σ0, δq. The convergence claim then follows from the
corresponding convergence (as δ Ñ 1) result, Proposition 2, in E pG8, σ0, δq. Q.E.D.

Our definition of the noncooperative Raiffa solution and the convergence result - Theorem
2, help clarify the remarks in Luce and Raiffa (1957) on pp.136-137. Geometrically, we may
think of the sequence in k of the k-period noncooperative Raiffa solutions starting from the
initial state upσ0q as the possibly nonlinear negotiation curve in the feasible payoff space F .
In the bargaining model E pGk, σ0, δq with deadline and discounting frictions, players care
about the payoffs they incur at every step in this negotiation curve. By Theorem 2, as the
frictions disappear, players only care about the final contractual state i.e. where they end up
on the efficient boundary. This corresponds to a linear path from upσ0q to the final payoff
state on the efficient boundary - the Nash bargaining solution of the problem pF ,upσ0qq which
is equal to Raiffa’s bargaining solution by Theorem ?THM? ??. The following continuation
of Example 1 illustrates that with frictions, even though the 3-period noncooperative Raiffa
solution lies on the efficient boundary, if we add more periods to the model, the movement
from 3-period to 4-period noncooperative Raiffa solution is on the efficient boundary. This
movement is required for the convergence result of Theorem 2.

Example 1 (continued). Suppose we prefix another period to the bargaining model in
Example 1. Then in the fourth period8, for δ ě 2{3,

V4
pσ0; δq “ p3.75` 0.375δ ` 0.046875δ2, 4.5´ 0.75δ ´ 0.09375δ2q

constitutes the status quo or the threat point for bargaining in the fourth period; and the
relevant h1 and h2 are given by h1pu2q “ 1

2
p12 ´ u1q and h2pu1q “ 12 ´ 2u1. This leads to

the equilibrium bargaining values

V 5
1 pσ

0; δq “

12´rp1´δqu2pσ0q`δV 4
2 pσ

0;δqs

2
` p1´ δqu1pσ

0q ` δV 4
1 pσ

0; δq

2
“ 3.75` 0.375δ2 ` 0.046875δ3

(44)

V 5
2 pσ

0; δq “
p1´ δqu2pσ

0q ` δV 4
2 pσ

0; δq ` 12´ 2rp1´ δqu1pσ
0q ` δV 4

1 pσ
0; δqqs

2
“ 4.5´ 0.75δ2 ´ 0.09375δ3

(45)

V5
pσ0; δq “ p3.75` 0.375δ2 ` 0.046875δ3, 4.5´ 0.75δ2 ´ 0.09375δ3q (46)

Note that 2V 5
1 pσ

0; δq ` V 5
2 pσ

0; δq “ 12, so V5pσ0; δq is a point on the efficient boundary.

8this is the last period with respect to backward counting of periods but first period with respect to
forward counting.
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Moreover, V 5
1 pσ

0; δq ă V 4
1 pσ

0; δq and V 5
2 pσ

0; δq ą V 4
2 pσ

0; δq. So the movement from V4pσ0; δq

to V5pσ0; δq is along the efficient boundary. On adding further periods, such movement will
keep repeating, converging to the Nash solution p4, 4q in the limit.

8 Discussion

Raiffa (1953) came up with a solution to the bargaining problem independently of Nash,
but, unlike Nash, he did not provide an axiomatic foundation for his solution. However, he
did consider his work to be on arbitration schemes, while Nash, as later expounded by Roth
(1979), was using his axioms to model features of positive bargaining theory. The "negotia-
tion curve" in Raiffa’s paper does have a non-cooperative flavor, since the negotiation curve
evolves over time according to the actions of individual bargainers. One could interpret it,
as various authors have (from Kalai (1977) to Hu and Rocheteau (2020)) as step-by-step
negotiation, in which the entire surplus from negotiation is not available immediately for an
agreement to be reached. Myerson (1991) relies on the short description in Luce and Raiffa
(1957) to define the Raiffa solution. He constructs a sequential bargaining, finite horizon
model, which implements the Raiffa solution in the limit as the deadline frictions disap-
pear. However, the unique subgame perfect equilibrium in his model leads to an immediate
solution, so no negotiation curve appears in equilibrium.

Our exploration of Raiffa bargaining solution also uses the short description in Luce and
Raiffa (1957), where the authors speak of linearization of the negotiation curve. It seems
to us that the nonlinear negotiation curve arises from some friction in the model and what
Luce and Raiffa call linearization is a limiting result as these frictions disappear. We also feel
that the insights from step-by-step negotiation models - that the contract from one period
serves as the status quo for the next period - are crucial to the Raiffa solution. We therefore
model a strategic-form game being played every period and contractual arrangements being
proposed and possibly accepted of one-period duration. The frictions are the finite number
of steps with the status quo for one step being derived from the agreement in a previous step,
as well as the usual discounting friction. As both these frictions disappear, individual period
status quo points become unimportant, as does delay, and the solution converges to what
Luce and Raiffa describe as a linearization of the status quo point, or the Nash bargaining
solution.
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Appendices

In these appendices, we present two bargaining models in the spirit of Binmore et al. (1986)
and Rubinstein (1982) for negotiating joint (correlated) strategies in an underlying finite
one-shot strategic game, with an assumption about the way the status quo point relates to
Pareto frontier of the game polytope F . Although the efficient boundary of the strategic
game may be non-differentiable at finite number of points, the equilibrium characterization
as well as the uniqueness and convergence properties of equilibrium can be established using
arguments similar to Shaked and Sutton (1984), Binmore and Dasgupta (1987), and Binmore
et al. (1986). For this reason, we simply state9 the propositions for the two models.

Assumption 3 in the risk-of-breakdown model, and Assumption 4 in the time preference
model, are requirements on the way the breakdown point v and the deadlock point 0 relate to
F . Specifically, they require that the breakdown point and the deadlock point are not worse
for any player than her most unfavorable point on the efficient boundary of F . Put another
way, for both players, there is always some point on the efficient boundary that is no better
than their breakdown/deadlock point. This is typical of most bargaining situations10.

A A bargaining model with risk-of-breakdown

Let σ P ∆pAq denotes a correlated action. While bargaining, players can write a binding
contract to jointly coordinate over and play a correlated action. Contracts are negotiated
through a multi-period bargaining game ErbpG, δq; and once settled, are assumed to be
enforced at the time the game G is played. The set of times T at which offers can be made is

9The proofs are available from the authors on request.
10For instance, for two countries who have an opportunity to negotiate a boundary dispute, the most

unfavorable point on the efficient boundary would be to legally cede control of the disputed territory. This is
worse, or at least no better than, the deadlock point even when the disputed territory is de-facto controlled
by one country.
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Figure 7: Recursive Schema of Extensive Form Bargaining Game ErbpG, δq

discrete, starts at t “ 1 and continues until bargaining ends. Period t refers to the duration
of time between time t and time t ` 1. We describe the bargaining protocol recursively.
Figure 7 gives a schematic extensive form description.

Suppose at time t, players have not agreed to any contract and bargaining has not ended
yet. A player i P N is randomly chosen with probability 1{2 to be a proposer. A contractual
offer is a correlated action σ P ∆pAq, and requires acceptance by the other player - the
responder, to become a binding contract. Therefore, an accept (A) or reject (R) decision
from the responder is solicited.

Once an offer σ becomes a binding contract in period t, bargaining ends. However, if the
offer is rejected in period t, then bargaining ends with probability 1 ´ δ. With probability
0 ă δ ă 1, bargaining continues to period t` 1.

When bargaining ends with an agreement on the correlated strategy contract σ, then the
strategic form game G is played with all players implementing σ by means of a joint ran-
domization device. On the other hand, when bargaining ends without an agreement, then
we say a breakdown has occured.

Payoffs. When bargaining ends with an agreement on the correlated strategy contract σ,
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players receive the payoffs upaq “ pu1paq, u2paqq with probability σpaq. When bargaining
ends in a breakdown, players get the payoffs as specified by an exogenous breakdown point
v “ pv1, v2q P F .

Strategies. A stationary bargaining strategy bi for player i is a pair pσi, riq of offer and
response strategies. i’s offer strategy σi is a correlated strategy contract in ∆pAq. i’s
response strategy ri must accept or reject any offer directed towards her, and is therefore, a
function ri : ∆pAq ÞÑ tA,Ru.

Solution Concept. A profile of stationary bargaining strategies b “ pb1, b2q is a subgame
perfect equilibrium (SSPE) of the bargaining protocol if they constitute a Nash equilibrium
after every history of play.

We now introduce an assumption on the location of the breakdown point of the bargaining
model in relation to the underlying strategic game. We will derive the uniqueness and
convergence results in the model under this assumption.

Assumption 3. The breakdown point v satisfies vi ě mipBFq for every player i “ 1, 2.

Since players are vNM expected utility maximizers, we have up∆pAqq “ F . In words, the
correlated strategy payoffs span the convex hull of the pure strategy payoffs in the game.
Therefore, any contractual offer of a correlated strategy σ P ∆pAq may be equivalently
viewed as a payoff offer upσq P F . Let Vpb; δq “ pV1pb; δq, V2pb; δqq be the values of strategy
profile b in the bargaining game ErbpG, δq. Using dynamic programming, we characterize
the win-win stationary bargaining equilibria and the corresponding values as

Proposition A.1. (SSPE). Suppose G satisfies Assumption 3. A profile of stationary bar-
gaining strategies b “ pb1, b2q where bi “ pσi, riq for i “ 1, 2 constitutes a subgame-perfect
equilibrium of the bargaining game ErbpG, δq if and only if

(i) (Strategy Optimality). Given the associated pair of values Vpb; δq “ pV1pb; δq, V2pb; δqq,
(a) (Response Optimality). For every player i “ 1, 2, ripσq “ A if and only if uipσq ě
p1´ δqvi ` δVipb; δq

(b) (Offer Optimality). Player 1’s offer σ1 P ∆pAq and player 2’s offer σ2 P ∆pAq are such
that

upσ1q “
´

h1
`

p1´ δqv2 ` δV2pb; δq
˘

, p1´ δqv2 ` δV2pb; δq
¯

(47)

upσ2q “
´

p1´ δqv1 ` δV1pb; δq, h2
`

p1´ δqv1 ` δV1pb; δq
˘

¯

(48)

(ii) (Value Optimality). The associated pair of values Vpb; δq “ pV1pb; δq, V2pb; δqq satisfy
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the Bellman equations of optimality given by

V1pδq “
h1
`

p1´ δqv2 ` δV2pδq
˘

` p1´ δqv1 ` δV1pδq

2
(49)

V2pδq “
p1´ δqv2 ` δV2pδq ` h2

`

p1´ δqv1 ` δV1pδq
˘

2
(50)

Proposition A.2. (Uniqueness of SSPE Values). Suppose G satisfies Assumption 3. For
any δ P r0, 1q, the Bellman equations of optimality for stationary subgame perfect equilibrium
strategies are given by (49) and (50), and they have a unique solution Vpδq “ pV1pδq, V2pδqq

that satisfies V1pδq ě v1 and V2pδq ě v2.

Proposition A.3. (Uniqueness of SPE Values). Suppose G satisfies Assumption 3. For
any δ P r0, 1q, the bargaining game E pG, δq has a unique subgame perfect equilibrium payoff
Vpδq “ pV1pδq, V2pδqq.

Proposition A.4. (Convergence to Nash Bargaining Solution). Suppose G satisfies As-
sumption 3. As δ Ñ 1, the sequence in δ, of the unique SPE values Vpδq of the bargaining
game ErbpG, δq converges to the Nash bargaining solution of pF ,vq.

B A bargaining model with time preference

In this section, we consider a variant of the bargaining model of Section A, where there
is no contingency of a breakdown. However, players have an option of never playing the
game in question and they have a preference over reaching an agreement sooner than later.
Let δ P p0, 1q be the common discount factor that players use to discount future payoffs.
Using the terminology of Binmore (1994), we refer to the disagreement corresponding to
the outcome in which no agreement is reached at any finite date as a deadlock, denoted
by d. With discounted preferences, the deadlock point, defined as the value of deadlock, is
0 “ p0, 0q.

We suppose that players have an opportunity to play a strategic game G given in preference
form, xN, pAi,ÁiqiPNy, where Ái is the preference relation of player i on the set A “ A1ˆA2

of action profiles. We derive the relevant F for the bargaining model with time preference
by adding a distinguished action di to the action set Ai for every player i “ 1, 2; specifying
that each player has the option of unilaterally enforcing the deadlock outcome d by choosing
di; extending the preference relation Ái to the set of lotteries over AY tdu; postulating that
the extended preference relations satisfy the vNM axioms so that they can be represented
by the expectation of vNM utility functions ui : A Y tdu ÞÑ R and, finally calibrating
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Figure 8: Recursive Schema of Extensive Form Bargaining Game EtppG, δq. For any date t,
δtG is the strategic game xN,A, δtuy.

both players’ vNM utility functions ui to assign the value 0 to the deadlock outcome d.
We refer to the augmented strategic game in utility form so obtained as Ĝ. The feasible
set F of payoffs for the bargaining model with time preference is then defined to be the
convex hull of pure-action payoff profiles in Ĝ. This ensures that the deadlock point 0 P F .
Even though risk preferences are fundamental in the definition of a strategic game, we refer
to the present formulation as the bargaining model with time preference and denote it by
EtppG, δq. This is because time preferences are the only source of bargaining frictions in this
model. The model is basically the well known Rubinstein (1982) model, but with the payoff
environment described by a strategic form game. Figure 8 gives a schematic extensive form
description.

We introduce an assumption which is needed in the uniqueness proposition for the time
preference model.

Assumption 4. The deadlock point 0 satisfies 0 ě mipBFq for every player i “ 1, 2.

Assumption 4 is an assumption on the way the deadlock point relates to the efficient bound-
ary of the set of contractually feasible payoffs in the underlying game.

Proposition B.1 describes the stationary bargaining equilibria in the time preference model
in terms of strategy optimality and value optimality in a manner that parallels Proposition

35



A.1 for the risk of breakdown model.

Proposition B.1. (SSPE). Suppose G satisfies Assumption 4. A profile of stationary bar-
gaining strategies b “ pb1, b2q where bi “ pσi, riq for i “ 1, 2 constitutes a subgame-perfect
equilibrium of the bargaining game EtppG, δq if and only if

(i) (Strategy Optimality). Given the associated pair of values Vpb; δq “ pV1pb; δq, V2pb; δqq,
(a) (Response Optimality). For every player i “ 1, 2, ripσq “ A if and only if uipσq ě
δVipb; δq

(b) (Offer Optimality). Player 1’s offer σ1 P ∆pAq and player 2’s offer σ2 P ∆pAq are such
that

upσ1q “
´

h1
`

δV2pb; δq
˘

, δV2pb; δq
¯

(51)

upσ2q “
´

δV1pb; δq, h2
`

δV1pb; δq
˘

¯

(52)

(ii) (Value Optimality). The associated pair of values Vpb; δq “ pV1pb; δq, V2pb; δqq satisfy
the Bellman equations of optimality given by

V1pδq “
h1
`

δV2pδq
˘

` δV1pδq

2
(53)

V2pδq “
δV2pδq ` h2

`

δV1pδq
˘

2
(54)

Proposition B.2. (Uniqueness of SSPE Values). Suppose G satisfies Assumption 4. For
any δ P r0, 1q, the Bellman equations of optimality for stationary subgame perfect equilibrium
strategies are given by (53) and (54), and they have a unique solution Vpδq “ pV1pδq, V2pδqq.

Proposition B.3. (Uniqueness of SPE Values). Suppose G satisfies Assumption 4. For
any δ P r0, 1q, the bargaining game EtppG, δq has a unique subgame perfect equilibrium payoff
Vpδq “ pV1pδq, V2pδqq.

Proposition B.4. (Convergence to Nash Bargaining Solution). Suppose G satisfies As-
sumption 4. As δ Ñ 1, the sequence in δ, of the unique SPE values Vpδq of the bargaining
game EtppG, δq converges to the Nash Bargaining Solution of pF ,0q.
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C On Raiffa’s mediation interpretation

Let us modify the bargaining model E pG8, σ0, δq by adding a mediator who is not a player
in the game. The sequence of events in period t is as follows. At the start, the model is
in some state σ. At this point, the mediator offers a contract mpσq P ∆pAq to players,
which they then accept or reject in some order. If the mediated contract mpσq is rejected
by some player, then the rest of the period is exactly as in E pG8, σ0, δq - players bargain
in random proposer fashion to determine the end-of-period state σ1, collect their payoffs in
state σ1 and the model moves to next date t ` 1 in state σ1. If the mediated contract mpσq
is accepted by both players, then the model state changes this period to mpσq, there is no
strategic bargaining this period, players collect their payoffs in state mpσq, and the model
moves to next date t ` 1 in state mpσq. Call the mediator augmented bargaining model as
EmpG8, σ0, δq.

A stationary Markov mediation strategy is a function m : ∆pAq ÞÑ ∆pAq, which for any
state σ, gives the mediated contract mpσq that is proposed by the mediator. A response
strategy rmi : pσ,mpσqq ÞÑ tA,Ru of player i is a rule which describes whether to accept
or reject the mediated offer mpσq in state σ. A profile of such response strategies are
denoted by rm “ prm1, rm2q. A strategy profile in the model, which is a vector β “

pm, rm,bq consisting of mediation strategy of the mediator, response-to-mediator strategies
of players, and bargaining strategies of the players, describes a complete path of play. Let
Vp‚, β; δq : ∆pAq ÞÑ F denote the value function of the strategy profile β. In every state σ,
Vpσ, β; δq “ pV1pσ, β; δq, V2pσ, β; δqq is the pair of values for players. A strategy profile has a
mediated outcome path if the contract proposed by the mediator is accepted by both players
in every state.

Suppose Vp‚; δq : ∆pAq ÞÑ F is the unique (by Proposition 2) value function shared by all
SMPE of E pG8, σ0, δq. Consider the following strategy of the mediator

For every σ, choose mpσq such that upmpσqq “ Vpσ; δq (55)

In other words, mpσq is the correlated strategy contract whose vNM payoff to players is equal
to their unique SMPE payoff in state σ in the model E pG8, σ0, δq. For t ě 2, inductively
define mtpσq :“ mpmt´1pσqq. Then the value of the mediated outcome path in state σ,
assuming the mediator follows the strategy defined in (55) and both players accept the
mediator’s offer mpσq in every state σ is given by

Vm
pσ; δq “ p1´ δqrupmpσqq ` δupm2

pσqq ` δ2upm3
pσqq ` . . .s (56)
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Lemma 11. Suppose G satisfies Assumption 2. Then for any state σ, we have Vmpσ; δq ě

Vpσ; δq

Proof. The conclusion of Lemma 11 follows from (56) and the claim: For every t ě 1,
upmtpσqq ě Vpσ; δq. We prove the claim by mathematical induction. The base step
upmpσqq ě Vpσ; δq is immediate from the definition (55) of mpσq. For the inductive step,
assume the claim is true for every k “ 1, . . . , t´ 1. Then

upmt
pσqq “ Vpmt´1

pσq; δq pBy definition of mt
pσqq (57)

ě upmt´1
pσqq pBy Proposition A.2q (58)

ě Vpσ; δq pBy Inductive Hypothesisq (59)

Q.E.D.

Corollary 3. Suppose G satisfies Assumption 2. Then for any state σ, the mediator’s offer
mpσq specified in (55), is accepted by both the players.

Proof. Lemma 11 implies that for any state σ, the value of the mediator’s offer is no less than
the value of strategic bargaining for any player. Hence both players accept the mediator’s
offer. Q.E.D.

Proposition C.1. Suppose G satisfies Assumption 2. Then for any state σ, the sequence of
payoffs tupmtpσqqutě1 along the mediated outcome path is a nondecreasing sequence. More-
over, limtÑ8 upmtpσqq “ NpF , σq.

Proof. The conclusion that tupmtpσqqutě1 is a nondecreasing sequence follows from (57) and
(58). We also have

lim
tÑ8

upmt
pσqq “ lim

δÑ1
Vm

pσ; δq

ě lim
δÑ1

Vpσ; δq pBy Lemma 11 q

“ NpF , σq pBy Proposition 2 q

Since NpF , σq is a point on the efficient boundary, the inequality holds as an equality. This
proves the proposition. Q.E.D.
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