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Abstract

In this paper, we consider a model of coalition formation in which one player has
private information about her outside option. This player is also essential in that
no coalition not including her can obtain any value. Values of coalitions depend on
membership but not on the outside option, which only becomes relevant if someone
leaves the bargaining. We show that, in any stationary equilibrium for high enough
δ, the informed player never makes an informative or acceptable counter offer. If she
rejects an offer from an uninformed player, the game ends. An uninformed player
therefore calculates what offer maximizes his expected payoff given the amount he
has to give other uninformed members of the coalition.
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1 Introduction

In this paper, we consider a model of coalition formation in which one player has private
information. Whilst we shall discuss the relation with the existing literature later in the
introduction, we point out now the following features of our model. We shall later discuss
the main results.

There is one player, Player 1, who has private information about her outside option
not available to other players. Using v(.) to denote the characteristic function of the game,
v({1}) is privately known to Player 1. This differs from settings, such as many bilateral
∗The authors would like to thank Jack Fanning, Brad Larsen and other participants at the 5th annual
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bargaining games, where the private information affects the total surplus available to
a non-trivial coalition. It also implies that if Player 1 foresees that future play might
involve her taking her outside option, she should do so immediately.

We assume the Player 1 is an essential player, so that the value of any coalition S

that does not include her is 0.

A player is not allowed to be a member of two or more non-identical coalitions, as is
usual in this literature. Thus once Player 1 joins a coalition or takes her outside option,
the game ends. This one-coalition property was a key feature in Selten [28] and Compte
and Jehiel [10]. This implies that there is no incentive for any subset of players to wait
for some other subset to leave before they form an alliance, a factor that causes possibly
delayed agreement in extensive forms where the rejector of a proposer gets the initiative
to make a new proposal (as in Chatterjee, Dutta, Ray, and Sengupta [5]).

Some other less crucial features of the model will be discussed later.
As an example of the setting we have in mind, consider a technology entrepreneur

with an idea who is considering setting up her own firm. There are interesting questions
of how much she has to disclose of her project in order for other players to write down
a characteristic function but we do not address these here. The characteristic function
values are considered common knowledge except for Player 1’s outside option, which has
a commonly known probability distribution.

Suppose Player 1 is negotiating with other players with different skills in order to
set up this firm. Before she enters the negotiation, she has received an offer for her
technology from an established firm. This buyout offer constitutes her outside option for
the coalitional bargaining. The one-coalition property is natural in this setting, as is the
fact that Player 1 is essential, since without Player 1’s idea no other player can get a
positive payoff.

We shall elaborate on this brief description of the environment later in this introduc-
tion. One additional requirement we place on the outside option is that it is significant, in
that the lowest outside option is the maximum average coalitional worth of any coalition
(treating Player 1 by herself as a coalition)-we call this the regularity condition. This
is related to the “strategic bargaining” versus the Nash bargaining effect of the outside
option (see Binmore, Rubinstein and Wolinsky [4]).

We model the negotiation through an extensive form used in Chatterjee, Dutta, Ray,
and Sengupta [5], where a player makes a proposal consisting of a division of the coali-
tional worth among the members of the named coalition. The members of the coalition
say yes or no in sequence. Player 1 is fixed to be the last person to respond. A player
can reject the proposal in which case he gets to make a counter-offer or decide to quit
the game. If a player quits, the proposal power goes to the next person in the sequence.
Since Player 1 has to be a member of every coalition, she can make the offer if everyone
else quits. If she quits too, the game is assumed to end with each player getting his
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individual worth (we shall assume everyone’s individual worth is 0, except for Player 1).
For most of the paper, we assume that Player 1 is able to take her outside option

only as a responder, not as a proposer. Since she has to be a member of every proposed
coalition for that coalition to have value, this is not a significant restriction. However,
for example, Chatterjee, Dutta, Ray, and Sengupta [5] allows a player to take his outside
option only when proposing, so that one-person coalitions are treated on par with larger
ones. Shaked [30] discusses these different assumptions and their effect on equilibrium
play in a model of complete information bilateral bargaining. He asserts that these are
best considered as representations of different institutional frameworks for bargaining.

The outside option for Player 1, denoted here as π, is assumed to be large enough to
matter. The problem is thus rendered non-trivial because otherwise one could proceed
by solving the complete information game and ignoring the outside option. (We are here
adopting the outside option as something Player 1 chooses to take rather than something
she is forced to take when the game ends exogenously, as explained in Binmore, Rubinstein
and Wolinsky [4], otherwise an increase even in a small outside option would have an effect
on the final outcome.)

Our results are derived mainly for sufficiently high values of δ. The equilibrium concept
we use is stationary Perfect Bayes’ equilibrium. Off-path beliefs do play a role but not a
significant one. The definition of Perfect Bayes’ equilibrium is adopted from Fudenberg
and Tirole [15]; stationarity is used in many multiplayer bargaining papers and is usually
justified on the basis of tractability and simplicity (a formal argument for simplicity of
strategies for multiperson unanimity games is made by Chatterjee and Sabourian [6]).

Our main results are described informally in what follows. Perfect Bayes’ equilibrium
involves some assumption about off-path beliefs. These beliefs do not come into play in
our most striking result, namely that (for high δ) any proposal by the informed player
must be non-informative. We show that the other kind of equilibrium, where such a
proposal is partially or fully informative, is not possible. Given the off-path belief, the
equilibrium if an uninformed player makes an offer looks like this: either all responders
named accept and the game ends or the informed player rejects and takes her outside
option, thus also ending the game. If the informed player makes the offer, this denouement
is postponed by one period. Thus the game ends within two periods. The example in
Section 3 will make clear why this happens and the unravelling of beliefs that lead to
the informed player not revealing any information. Of course, off the equilibrium path,
the game could continue for a longer duration. The uninformed player has to trade off
his payoff against those of the other uninformed players but also against the likelihood
of getting nothing if the informed player rejects. This suggests the informed player,
when she makes a rejected, uninformative proposal, will seek to transfer the proposal
power to an uninformed player who will make the proposal with the highest probability
of acceptance by the informed player (keeping other players’ responses the same).
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In terms of the usual questions asked about bargaining outcomes, our model displays
a high degree of inefficiency and not in terms of delay. The inefficiency arises from the
uninformed proposer underestimating the outside option of the informed player and thus
precipitating the end of the game. This will not happen if the optimal proposal happens
to be one where the informed party accepts with probability 1. If an efficient solution
is reached, it is possible that the informed player gets more than she would have if her
v({i}) were commonly known.

Related literature. Some papers in extensive form models of characteristic function
games have been mentioned already. Among the ones left out is Gul [17], which is very
different in approach from this paper. Okada [23] studies a complete information game
with proposers randomly chosen in each round and studies strictly superadditive games
(under complete information). Perry and Reny [26] and Moldovanu and Winter [20] study
games without discounting and identify equilibria that are in the core of the game, also
under complete information.1

There are many fewer papers on coalition formation with some private information.
Forges, Mertens and Vohra [13] take an ex ante mechanism design approach and define
an ex ante core but do not deal with explicit bargaining protocols. Dutta and Vohra [11]
define a different notion of core based on some consideration of blocking and information.
There is no bargaining in these papers. The two papers we know of that involve non-
cooperative modelling are both very different from ours and neither involves discounting-
these are the papers by Serrano and Vohra [29] and Okada [24].

Serrano and Vohra [29] extend the notion of core to an incomplete information ex-
change economy by formalizing the coalitional decision to object (to a status quo allo-
cation) via an intra-coalition simultaneous move single period Bayesian game. Okada [24]
generalizes this idea of coalitional objection by allowing sequential one-stage intra-coalition
unanimity voting, which allows for information transmission among members. Okada [24]
further considers an alternating offer intra-coalition repeated bargaining game similar to
ours, and formalizes objections that constitute stationary sequential equilibrium under
the assumption that: proposals in this bargaining game are never informative.2 In our
paper, we find this property to be a necessary feature of any equilibrium.

The literature on bilateral bargaining might provide some more analogues to our
work and we provide a selective and brief summary of this literature, omitting complete
information papers. The most famous strand of this literature is that related to the Coase
conjecture in which the seller (who is uninformed) makes offers and the buyer (who is

1There is also a large literature on complete information coalitional bargaining in settings with ex-
ternalities across coalitions. For details see Ray [27].

2Okada [24] cites this exogenous restriction of non-informative offers as an application of the “principle
of inscrutability” proposed by Myerson [21]. He also imposes another exogenous restriction, which
presumes that agents respond using a type dependent cutoff rule. This property, too, is obtained as a
necessary property for any equilibrium in our paper.
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privately informed) accepts or rejects. If the lowest buyer value exceeds the seller value,
a unique, weakly stationary equilibrium exists (Fudenberg, Levine and Tirole [14]). As
offers become more frequent (δ → 1), the seller’s offer converges to the lowest buyer value
and the game ends almost immediately (Gul, Sonnenschein and Wilson [19])- this being
known as the Coase conjecture. This is not particularly relevant to our results here since
the informed party never makes offers. Gul and Sonnenschein [18] show that a similar
result can hold if the informed party does make offers, under the condition that such offers,
if not accepted, are uninformative. This condition is one that we prove as a characteristic
of all stationary PBE in our model. Many variants seek to examine this conjecture (see
Feinberg and Skrzypacz [12] and Cho [9] in different models. Of more relevance are
the models with one-sided incomplete information where the informed party does make
offers. Grossman and Perry [16] construct an equilibrium where the informed player’s
offers can be informative. Our result is similar, though the setting is very different,
to Ausubel and Deneckere’s “right to remain silent” (Ausubel and Deneckere [3]) where
the informed player remains silent rather than give away any information. Admati and
Perry [2] construct a model where the duration of the silence (the other player cannot
interrupt) conveys information.

In two-sided incomplete information models such as Chatterjee and Samuelson [7]
and [8], with each informed player being of two types, a player keeps making a non-
informative offer as part of a randomised strategy until one of them reveals his type and
the game becomes a one-sided incomplete information game.3 The logic of the Coase
conjecture then takes over, so that the player who is first to reveal loses all gains from
trade as δ → 1 (Myerson [22] shows this last part in his textbook). Similar results are
also presented in Abreu and Gul [1] and other papers built on their reputation model.
Notice that in this literature, the war of attrition means the game continues, whilst in our
model in the paper, the informed player quits because any attempt to use the information
to do better fails in equilibrium.

2 Model

Consider an economic interaction involving players in N = {1, . . . , n} described by an
essential game where the following are common knowledge: (i) v(N) = 1, (ii) v(S) = 0

if 1 /∈ S, and (iii) v(S) < v(N) for all S 6= N . However, the outside option of the
essential player 1, that is, v({1}) := π is private knowledge, and is, publicly known to
be distributed over [η, 1], η ≥ 0 with a cumulative distribution function F (.) that has
positive density all over the support.

3Okada [25] focuses on a two agent alternating offers bargaining game with discounting where both
agents have private verifiable types, and bargain over contracts. But he does not focus on general
coalition formation like our analysis.
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Define for all S ⊆ N , LS to be the set of all possible linear orders on S. Further, for
any i ∈ N , and any � ∈ LN\{i}, define �i to be a linear order in LN where all agents in
N \ {i} are ranked according to �, followed by i in the last position.

The agents bargain over forming a coalition using a bargaining game with ‘sequential
offers - rejector proposes protocol ’. So, at each information set, an active agent (that is,
an agent who is yet to accept a proposal or quit in the game): either makes a proposal,
or else responds to a proposal by either accepting it or rejecting it or else quitting the
game altogether. A proposal by any active agent i is a tuple (S, y) where: (i) i ∈ S

with S being a subset of the set of all active agents containing at least two members, (ii)
y ∈ R|S|+ , and (iii)

∑
j∈S yj ≤ v(N). Whenever such a proposal (S, y) is made, members

of S respond to this proposal sequentially according to any exogenous linear order �1
r

where �r∈ LN\{1} - that is, where the informed party is ranked last.4 If a proposal (S, y)

is accepted, then the highest ranked active agent in N \ S according to any exogenous
linear order �p∈ LN ; makes the next proposal. If (and only if) a proposal is rejected, all
agents who have not yet quit the game, incur a period of delay, after which the rejector
proposes.5 Any agent who chooses to quit while responding to a proposal, realizes her
outside option without any delay.

We make the following regularity assumption,

R : η ≥ max
S⊆N

v(S)

1 + (|S| − 1)δ
.

This assumption ensures that the incomplete information problem is non-trivial at all
information sets of our bargaining model. We require this restriction because the alter-
nating offers nature of our bargaining protocol allows for possible information sets where
dependence between beliefs and proposal decisions may break down. R rules out these
possibilities as it binds outside options away from the stationary subgame perfect Nash
equilibrium payoff in the complete information analogue of our bargaining game with
zero outside options.6 We discuss this point in greater detail in Section 4.

We use the equilibrium notion of Perfect Bayes’ Equilibrium (PBE) for our bargaining
game. A PBE assigns to each information set in the game, say I, an action and a belief.7

This assigned action is the one that the agent with move at I, say k, is prescribed
to undertake. The set of assigned beliefs are probability distributions on I, which in

4Relaxing this restriction would lead to non-existence of equilibrium.
5It is assumed to be common knowledge that; if a proposal is accepted, then it becomes a binding

contract that is enforceable by courts, which in turn, implies that the proposer must make good on the
promised payoff distribution. This assumption ensures that any proposal accepted on the equilibrium
path must have a payoff distribution that sums up to the worth of the associated coalition.

6See Chatterjee, Dutta, Ray and Sengupta [5].
7In line with Fudenberg and Tirole [15], we assume that at all information sets, all uninformed parties

hold the same belief about the informed party (see page 332).
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our particular game of observable actions and perfect recall, translate into probability
distributions over the Borel measurable subsets of [η, 1]. These beliefs must be consistent
with Bayes’ rule, wherever possible. Finally, the action assigned at I must be optimal
for k, given her assigned beliefs at I.

In particular, we look for belief stationary PBE in pure strategies. These are PBE
which satisfy the following property. At any two information sets I and I ′ such that
the same agent, say i, has the move at both information sets: if a PBE assigns identical
beliefs to i at both information sets, then the assigned action at both information sets
must be identical too. Henceforth, in the paper, we refer to a belief stationary PBE as
an ‘equilibrium’. We also define the following notation: for any i ∈ S, any S ⊆ N and
any x ∈ RS

+, x−i := (xj)j∈S\{i}.

3 Results

Let us denote the informed player with type π ∈ [η, 1] as 1π. We begin this section by
noting the fact that for any equilibrium of this game, and any information set I on the
equilibrium path, all uninformed parties share the same belief about the outside option
of the informed party 1. This follows from the facts that: (i) past actions of 1 are equally
observable across all uninformed agents, and (ii) the beliefs of uninformed parties must
be formed on the equilibrium path in accordance to Bayes’ rule.

And so, for any equilibrium, we define Gi(I, B) for all i 6= 1, to be the continuation
game which starts from the information set I where agent i has the move to propose,
and all uninformed players have the same belief B about the distribution of private type
π.8 Similarly, for any equilibrium, define G1π(I, B) as the continuation game starting
from information set I where the informed player of type π has the move to propose, and
all uninformed players haver the same belief B about the distribution of private type π.
For simplicity of notation, we often: (1) suppress the argument I in the notation for a
continuation game wherever the relevant information set is clear from the context, and
(2) drop the subscript π (when the relevant outside option is clear from the context), and
write this continuation game as G1(B).

3.1 An example

We begin by presenting the following example, which provides an informal and intuitive
exposition of the nature of equilibria in our bargaining game. Consider a bargaining
setting where: v(N) = 1, v(12) = 0.9, v(13) = 0.45, v(1) := π ∼ unif [0.4, 1], and
v(S) = 0 for all other S ⊂ N . Fix δ = 0.8, and suppose that 2 is the first proposer.

8It can easily be seen thatB denotes a pair consisting of a measurable subset of [η, 1], and a distribution
over it.
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Suppose that:

• 2 and 3 always propose formation of coalitions {1, 2} and {1, 2, 3}, respectively. The
latter proposal is always accepted by 2. 1 always makes an uninformative proposal
that is rejected by either of 2 or 3.

• 2 and 3 accept a proposal if and only if each uninformed member of the coalition to
be formed, is offered an amount at least as great as δ times the maximum expected
payoff that she can obtain by making a proposal herself. Any type 1π accepts a
proposal if it offers her at least π, or else she quits.

We argue below, informally, that when all agents are expected to play in a manner
consistent with the description above, no agent can benefit by deviating unilaterally.
To see this, note that proposing {1, 2} is better than proposing {1, 2, 3} for agent 2.
That is because, the expected payoff by proposing {1, 2} and offering any amount y1

to 1 is (0.9 − y1)Prob(π ≤ y1) = (0.9−y1)(y1−0.4)
0.6

, which is maximized when y1 = 0.65

(the corresponding probability of acceptance is 5
12
). Thus, the (maximum) expected

payoff to 2 by proposing {1, 2} is 0.104. Arguing similarly, the expected payoff to 3 by
proposing {1, 2, 3} in a manner that is acceptable to 2 is, max

x
(1 − x)Prob(π ≤ x) −

0.8 × 0.104 = 0.0666, with the maximizing x value being 0.7, and the corresponding
probability of acceptance being 0.5. Now consider the maximum expected payoff that 2

can get by deviating and proposing {1, 2, 3} in an acceptable manner. This value is given
by max

x
(1 − x)Prob(π ≤ x) − 0.8 × 0.0666 = 0.0966 which is less than 0.104, implying

that proposing {1, 2} is more profitable for 2 than proposing {1, 2, 3}. Finally, 3 will not
find it profitable to deviate and propose {1, 3} because the maximum available surplus
to negotiate over is v({1, 3})− 0.4 = 0.05, which is less than 0.0666.

Finally, consider the informed party 1. Note that 1’s proposal can never be informative
on the equilibrium path, because an informative proposal would divide the support into
at least two subintervals. For example, suppose type π ∈ [0.4, 0.7] is prescribed to make
an acceptable proposal to agent 3 offering her 0.7 while type π ∈ [0.7, 1] is prescribed to
make an unacceptable proposal which will be rejected by either of agents 2 and 3. Then,
the type π ∈ [0.7, 1] would be offered 0.85 in the next period, implying that all types in
[0.4, 0.7] would deviate to mimic the types in [0.7, 1].

Now, as we show later in Theorem 1, any non-informative offer to be made by the
informed party must be an unacceptable offer. Note that such an offer must be addressed
to agent 3 as she is the uninformed agent prescribed to propose the maximum amount
0.7 to agent 1 in the next period. Thus, if agent 1 is the first proposer, she makes an
unacceptable proposal, and so, her equilibrium payoff is: 0.56 if her type lies in [0.4, 0.7],
or else δπ = 0.8π (obtained by quitting in the second period).

As we argue formally in the forthcoming theorems, these kinds of proposal and ac-
ceptance behaviours are the only kinds permissible in any equilibrium. Also note that
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the equilibrium expected payoffs, when 2 is the first proposer, are (0.65, 0.104, 0); and
the coalition {1, 2} forms on the equilibrium path immediately with probability 5

12
, or

else the informed party quits. Compare this to a complete information setting where π
is known to be, say, 0.7, and all other information remains unchanged. As δ → 1, we can
obtain the limiting equilibrium payoffs from Chatterjee, Dutta, Ray, and Sengupta [5]
to be (0.7, 0.2, 0.1). Notice that uninformed agents 2 and 3 do badly under incomplete
information, and the equilibrium outcome, too, is inefficient.

3.2 Main results

We now present the formal results underlying the example above. First, we present the
proposition below, which establishes that for any equilibrium of the game, there can be
no information set where any type of the informed party makes an informative proposal
(a proposal that leads to any updating of beliefs held by uninformed parties by Bayes’
rule).

Theorem 1. The informed party never makes an informative proposal on the equilibrium
path.

Proof: Suppose there exists an equilibrium σ such that there exists some type 1π̃ who
is prescribed to make an informative offer (one that leads to updating of beliefs of un-
informed parties) at some information set on the equilibrium path. Fix I to be the first
such information set on the equilibrium path (that is, at all earlier information sets on the
equilibrium path, the informed party made non-informative offers, if called on to make
offers), and consider the continuation game G1(I, B). Note that, by construction, the
belief B must have an interval support J := [a, b] ⊆ [η, 1].

Now for each type 1π with π ∈ J , define xπ to be the equilibrium payoff from playing
according to σ in the continuation game G1([a, b]) that starts from I. Let J̄ ⊆ J be the
types of the informed party who are prescribed to make an unacceptable proposal at I.9

Now there are three possibilities: (i) J̄ = ∅, (ii) J̄ = J , and (iii) J̄ 6= ∅, J̄ 6= J . We
consider each possibility in the following discussion as a different case.

Case (i). In this case, our supposition is that: (a) all types in J := [a, b] are prescribed
to make acceptable proposals, and (b) there exists at least one type 1π̃ whose acceptable
proposal is informative.10 We argue below that for all types π ∈ J , xπ = K where K
is a non-negative real constant. If not, then there exists at least a pair of types in J ,
with different equilibrium payoffs (and hence, different prescribed acceptable proposals)

9Given σ, an unacceptable proposal made by informed agent 1 is a tuple (S, y) such that there exists
some j ∈ S \ {1} such that σ prescribes j to not accept this proposal.

10Given σ, a proposal (S, y) is acceptable if it is not unacceptable.
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implying that the type with lower equilibrium payoff has a profitable unilateral one-
deviation in mimicking the other type’s equilibrium action at I, which would contradict
our σ being equilibrium.
Now the acceptable proposal, say P ′, prescribed to be made by 1π̃ at J is informative if
and only if there exist disjoint subintervals Jl, Jh of J , where each type in Jh makes the
acceptable proposal P ′ (that is, π̃ ∈ Jh), and all types in Jl make some other acceptable
proposal Q′ 6= P ′. By sequential rationality, there exist types π′h ∈ Jh and π′l ∈ Jl such
that xπ′h 6= xπ′l (since the intervals Jh and Jl are disjoint), which leads to a contradiction
to the aforementioned conclusion that xπ = K, ∀π ∈ J .11

Case (ii). In this case, our supposition is that: (a) all types in J := [a, b] are prescribed to
make unacceptable proposals, and (b) there exists at least one type 1π̃ whose unacceptable
proposal is informative. Suppose that 1π̃ is prescribed to propose some unacceptable
proposal P . Note that any unacceptable proposal, essentially, makes a demand for a
payoff that is to be rejected by at least one of the uninformed parties to whom this
proposal is addressed.
Now, in a manner similar to the previous case (i): the unacceptable proposal P prescribed
to be made by 1π̃ at I, is informative if and only if there exist disjoint subintervals Jl, Jh
of J , where each type in Jh makes the unacceptable proposal P (that is, π̃ ∈ Jh), and
all types in Jl make some other unacceptable proposal Q 6= P . Therefore, by sequential
rationality, there exist types π′h ∈ Jh and π′l ∈ Jl such that; both agents 1π′h and 1π′l realize
their equilibrium payoffs by accepting an offer made by some uninformed party after
observing their unacceptable proposals on the equilibrium path.12 However, sequential
rationality also implies that these realized equilibrium payoffs must be unequal, that is,
xπ′h 6= xπ′l . Hence, as argued earlier, either of these two types has the profitable unilateral
one-deviation to mimic the other on the equilibrium path. And so, once again, we get a
contradiction to σ being an equilibrium.

Case (iii). In this case, our first supposition is that there exist a pair of types 1π′ , 1π′′

such that: (i) π′ < π′′, (ii) π′ ∈ J̄ , and (iii) π′′ ∈ J \J̄ . Now, if xπ′′ > xπ′ , then the type 1π′

has a profitable unilateral one deviation to mimic type 1π′′ , and make the same acceptable
proposal as the one prescribed by σ to 1π′′ . On the other hand, if xπ′′ < xπ′ , then it must
be that 1π′ does not quit on the equilibrium path (or else xπ′ = δπ′ < δπ′′ ≤ xπ′′); and so,
it follows that there exists a profitable unilateral deviation by type 1π′′ where she mimics

11Therefore, two distinct offers on the equilibrium path cannot give identical equilibrium payoffs, and
so, we get a contradiction.

12Suppose there exists a subinterval where all types realize their equilibrium payoffs by quitting. In that
case, the equilibrium payoff to all uninformed parties in the continuation game following the unacceptable
proposal made by 1 is zero. This contradicts the notion of equilibrium as at least one uninformed party
can do better in expected sense, by offering any value in the interior of the belief subinterval. Therefore,
π′h and π′l are well defined.
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the type 1π′ (using the same argument as before). Therefore, we can infer that

(a) δπ′′ ≤ xπ′′ = xπ′ .

Now, by Bayes’ rule, the unacceptable proposal of type 1π′ would reveal her outside option
to be less than π′′ (who is supposed to make an acceptable proposal by assumption). And
so, at all future information sets on the equilibrium path generated by σ, 1π′ would be
offered an amount less than that offered to π′′ by any uninformed party, implying that
xπ′ < δπ′′. But then, (a) implies that δπ′′ < δπ′′, which is a contradiction.
Therefore, it must be that that for all π′ ∈ J̄ and all π′′ ∈ J \ J̄ , π′ ≥ π′′. This implies
that both J̄ and J \ J̄ are sub-intervals of J .13 That is, there exists d ∈ J , d /∈ {a, b}
such that σ prescribes the informed party to make an acceptable proposal if her outside
option π ∈ [a, d], or else make an unacceptable offer. Now as argued earlier in Case (i),
all types 1π with π ∈ [a, d] must get the same equilibrium payoff K ′, and (b) K ′ ≥ δd.
Now if there exists a π̂ ∈ (d, b] such that xπ̂ < K ′, then 1π̂ has profitable unilateral one
deviation to mimic any type 1π′ with π′ ∈ [a, d] and get the higher payoff K ′. Therefore,
σ is an equilibrium only if (c) xπ̂ ≥ K ′,∀π̂ ∈ (d, b]. Now, σ must ensure that there is
no profitable unilateral one deviation available to any type π ∈ [a, d], where she mimics
a higher type π̂ ∈ (d, b]. This would be true only if σ prescribes all types in (d, b] to -
not only make an unacceptable proposal at information set J - but also quit the game at
the consequent response node on the equilibrium path. That is, (d) ∀π̂ ∈ (d, b], xπ̂ = δπ̂.
Therefore, from (b) and (c), it follows that for all π̂ ∈ (d, b], δπ̂ ≥ K ′ implying (in limit)
that d = K′

δ
.

However, this implies that at the information set that arises on the equilibrium path with
positive probability, after an uninformed party rejects an unacceptable proposal made at
information set I, the beliefs of uninformed parties are updated in accordance with Bayes’
rule where they now believe that π ∈ (d, b]. Therefore, from (d) it follows that: upon
observing an unacceptable proposal on the equilibrium path, at least one uninformed
party makes a proposal offering some ζ ≤ d to the informed party, in response to which the
informed party quits. However, this gives the uninformed party an equilibrium payoff 0,
and so, she has a profitable unilateral one deviation of offering some ζ ′ > d upon observing
an unacceptable proposal on the equilibrium path (and getting a positive expected payoff
as informed types in the interval (d, ζ ′) would accept). Thus, we get a contradiction to σ
being an equilibrium.

Theorem 1 above, implies that for any equilibrium of this game, the informed agent
must make the same proposal irrespective of her outside option at any information set

13More precisely, the interval J \ J̄ is on the left of interval J̄ on the real line.
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where she is called upon to make an offer. In other words, no matter what the outside
option, the informed party always chooses a passive strategy of bargaining with an unin-
formed party only while responding. We show below that if the discount factor is not too
low, then this non-informative proposal must be unacceptable to the uninformed parties.

Theorem 2. If δ ≥ η, there exists no equilibrium in which the informed party makes an
acceptable proposal.

Proof: Suppose not. That is, suppose that there exists an equilibrium σ such that
the informed party 1 makes an acceptable proposal and δ ≥ η. By Theorem 1, such
a proposal must be non-informative. Further suppose that: (i) under σ, 1 makes such
an acceptable proposal P , for formation of a coalition 1 ∈ S ⊆ N , at an information
set where the informed party has rejected a proposal by the uninformed party, and (ii)
this acceptable proposal gives 1 a payoff of X. Note that by Theorem 1 all types must
make the same acceptable proposal, and so, sequential rationality requires that X ≥ δ.
Therefore, by sequential rationality and Bayes’ rule, uninformed parties must hold a belief
that π ≤ δX at the start of this continuation game. And so, in case the uninformed parties
reject this proposal and make a counteroffer, they offer 1 an amount y1 ≤ δX. Further,
note that if y1 < δX, then by our supposition, all types of informed party would reject
this counteroffer proposal, leading to a period of delay without any further updating
of beliefs. Thus σ would constitute an equilibrium only if y1 = δX. Therefore, the
uninformed parties would expect this counteroffer to be accepted by player 1 for sure,
and so, by the complete information bargaining logic developed in [5], each uninformed
party can get at least v(S)−δX

1+(|S|−2)δ
. Therefore, the proposal P by 1 would be acceptable only

if each uninformed party is offered at least δ[v(S)−δX]
1+(|S|−2)δ

. Therefore,

X ≤ v(S)− δ(|S| − 1)[v(S)− δX]

1 + (|S| − 2)δ
,

which implies that δ ≤ X ≤ v(S)
1+(|S|−1)δ

.14 So if δ ≥ η, we get a contradiction to our
regularity condition.
Finally, consider the only other remaining possibility that 1 is the first proposer in the
game. Belief stationarity requires that prescription of σ to 1 at the initial information
set, should be same as that at the information set analyzed above. And so, the result
follows.

In light of Theorem 2, henceforth, we assume δ ≥ η for all later results. The following
theorem builds upon Theorems 1 and 2, to establish that the informed party never makes
a counteroffer on the equilibrium path.

14The inequality implies that X
[
1− δ2(|S|−1)

1+(|S|−2)δ

]
≤ (1−δ)v(S)

1+(|S|−2)δ ⇔ X[(1 − δ) + (|S| − 1)δ(1 − δ)] ≤
(1− δ)v(S).
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Theorem 3. The informed party never makes a counteroffer on the equilibrium path.

Proof: Fix any equilibrium σ, and suppose there exists a type of the informed party
1π′ who rejects an offer and makes a counteroffer on the equilibrium path. Let I be the
earliest of such information sets; that is, at all earlier information sets on the equilibrium
path, no type of the informed party rejects and makes a counteroffer. Therefore, by
Theorem 1, the equilibrium belief prescribed by σ to I must have an interval support,
say, must be [a, b].15 Further, for each type π, let xπ denote the equilibrium expected
payoff to the informed party 1π when all players play σ in the continuation game starting
from the information set I. Finally, let Y be the sure amount that 1π′ would realise by
accepting at I.
Therefore, xπ′ ≥ max{Y, π′}, which, by Theorem 2, implies that 1π′ must accept a pro-
posal to end the game on the equilibrium path in this continuation game. This implies
that all types of informed parties 1π with π ≤ min{b, xπ′} must get the same equilibrium
expected payoff xπ′ in this continuation game, or else they would have a profitable uni-
lateral one-deviation of mimicking 1π′ to get a greater payoff or vice-versa. This, in turn,
implies that all agents 1π with π ≤ min{b, xπ′} must, on the equilibrium path, take the
same actions as 1π′ , or else their types would get revealed, and by sequential rationality,
they must not get the same equilibrium payoff xπ′ .16

Note that if there exists any type of the informed party 1π̂ with π̂ ∈ (xπ′ , b] who is
also prescribed to accept a proposal on the equilibrium path in the continuation game
starting from I; then xπ̂ ≥ π̂ > xπ′ , which implies that 1π′ has the profitable unilateral
one-deviation to mimic 1π̂ and get a higher payoff. Therefore, if σ is a PBE, it must be
that all informed parties with types in π ∈ (xπ′ , b] must quit at I.
Thus, on the equilibrium path, if uninformed parties observe that game has not ended
after the proposal made at information set I, then they update their beliefs to types being
distributed in [a,min{b, xπ′}] by Bayes’ rule. This means that at all the information sets
on the equilibrium path subsequent to I, by sequential rationality, uninformed parties
must not offer the informed party a sure amount greater than Y , implying that xπ′ ≤
δY < Y .17 Thus, we get a contradiction.

15Note that the equilibrium belief at I must have an interval support. That is because: if equilibrium
belief at I does not have an interval support, then it must have a support, say J , which is a collection
of disjoint intervals. And so, there must exist types π∗, π∗∗ such that π∗ 6= π∗∗, π∗ ∈ J , and π∗∗ /∈ J .
Therefore, at some previous information set Î on the equilibrium path, σ must have prescribed 1π∗ to
reject and make a counteroffer while prescribing 1π∗∗ to either accept or quit. But then I cannot be the
earliest information set where some type of the informed party rejects and makes a counteroffer. This
contradicts our supposition in the proof. In fact, we can infer from Theorem 1 that this interval support
must contain all possible types, that is, be [η, 1].

16Here our regularity assumption on η is essential, as it ensures that the amount offered by uninformed
parties on the equilibrium path depends on their beliefs in a non-trivial manner.

17This would follow from maximization of expected payoff over a smaller interval with the same lower
bound.
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Corollary 1. For any π ∈ [η, 1], the agent 1π accepts a proposal on the equilibrium path
if and only if it offers her an amount greater than or equal to her outside option π.18

Proof: By Theorem 3, on the equilibrium path, the informed party either accepts a
proposal or else quits. Therefore, at any information set on the equilibrium path, if a
type of the informed party is prescribed to quit, then her outside option must not be
less than the sure amount she was offered, and if she is prescribed to accept then her
outside option must not be greater than the sure amount she was offered. Hence, the
result follows.

In the following part of the paper, we use Theorems 1 and 3 to characterize the
equilibrium of the game. To do so, we first define the following class of strategy-belief
pairs Σ∗.

Definition 1. Let Σ∗ be the set of strategy-belief pairs σ∗ that:

1. for any i 6= 1 and at any continuation game Gi(B), i proposes any (S∗B,i, y
∗
B,i) where

y∗B,i−i =

w̄B,i1 ,

{
āB,jj

FB(ΩB,w̄B,i1
)

}
j∈S∗B,i\{1,i}

 and
∑
j∈S∗B,i

y∗B,ij = v(S∗B,i)

such that (S∗B,i, w̄
B,i
1 ) solves

max
(T,y1)∈ρi(N)×[η,1]

{
[v(T )− y1]FB(ΩB,y1)

1 + {|T | − 2}δ

}
where ρi(N) := {S ⊆ N |i ∈ S}, ΩB,y1 := {π ∈ B : π ≤ y1}, and FB(.) is a
distribution over [η, 1] such that: (i) it is the same as the distribution associated
with belief B over its support J , (ii) FB(x) = 0 if x ∈ [η, inf J ], and (iii) FB(x) = 1

if x ∈ [sup J, 1].

Further, for all j ∈ N ,

āB,jj :=
δ
[
v(S∗B,j)− w̄

B,j
1

]
FB(ΩB,w̄B,j1

)

1 + {|S∗B,j| − 2}δ
.

At any response node where i’s belief distribution is FB(.), she accepts a proposal
offering any amount x ∈ [η, 1] to the informed party; if and only if all uninformed

agents j addressed in it, are offered a (sure) share at least as great as āB,jj

FB(ΩB,x)
.

18Ties may be broken in any arbitrary way. It is inconsequential as our prior belief is a density function.
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2. At any continuation game G1(B), the informed party, irrespective of her outside
option, makes an unacceptable proposal (T ∗B, z

∗
B) such that there exists a j ∈ T ∗B\{1}

such that z∗Bj < āB,jj . At any response node, 1π accepts a proposal if it offers her
an amount at least as great as π or else she quits.

3. At any off the prescribed path (by σ∗) information set where Bayes’ rule cannot be
applied, if an uninformed i 6= 1 receives an acceptable proposal (as per the condition
2 above) from the informed party 1π, then she changes her beliefs to put full prob-
ability on the event that π = η. At any other off the prescribed path information
set where Bayes’ rule is not applicable, any uninformed party keeps her beliefs un-
changed as those held at the previous period. At every other information set, beliefs
are updated in accordance with Bayes’ rule.

Remark 1. It is easy to see that irrespective of the prior distibution of private informa-
tion, Σ∗ 6= ∅. Note that any strategy-belief pair σ∗ ∈ Σ∗ leads to the different paths of
play depending on the identity of the first proposer. That is, when all agents are playing
as prescribed by σ∗: if an uninformed party i 6= 1 is the first proposer, then she pro-
poses a coalition S∗[η,1],i and offers the informed party w̄[η,1],i

1 (that is, makes the proposal
(S∗[η,1],i, y

∗
[η,1],i) as described in Definition 1 above) - which either leads to (i) an acceptance

after which the game ends, or else (ii) quitting of the informed party after which the game
ends. On the other hand, if the informed party is the first proposer when all agents are
playing as prescribed by σ∗, then she makes an unacceptable proposal leading to a period
of delay, after which the first rejector as per �1

r (say 2) proposes a (S∗[η,1],2, y
∗
[η,1],2), which

in turn leads to, as before, either an acceptance or else quitting of the informed party.

Now, we present the first main result of this section. It characterizes the equilibrium
of our bargaining game when the underlying characteristic function is symmetric around
the informed party 1.

Theorem 4. For any �1
r,�p: whenever |S| = |T | =⇒ v(S ∪ {1}) = v(T ∪ {1}) for all

S, T ⊆ N \ {1},

1. any σ∗ ∈ Σ∗ constitutes an equilibrium.

2. if there exists an equilibrium σe /∈ Σ∗ then there exists a corresponding σ∗e ∈ Σ∗

such that σe and σ∗e prescribe the same actions and beliefs, at all information sets
on the equilibrium path.

Proof of (1): Consider any strategy σ∗ ∈ Σ∗. Now fix any type π, any i 6= 1, any con-
tinuation game game G1π(.), and consider any unilateral one-deviation by 1π of making:
either (a) an acceptable proposal or else (b) an unacceptable proposal different from the
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one prescribed in σ∗. Both possibilities would lead to an off the candidate equilibrium
path (by σ∗) information set. By construction of σ∗, an acceptable proposal in the first
case (a) would lead to a downward revision of the belief about type of 1 to the lowest
possible value η. This implies that uninformed parties would never offer 1 any amount
in excess of η on the equilibrium path, for all times in future. Thus, such a unilateral
one deviation cannot be profitable. In the other case (b), σ∗ implies that the beliefs of
uninformed parties would remain unaffected, implying that such a one-deviation would
bring no increment in expected payoff while incurring a period of delay. Hence, such a
one-deviation, too, would not be profitable.

Finally, note that σ∗ prescribes any uninformed party i 6= 1 to propose at any continuation

game Gi(B): a proposal (S∗B,i, y
∗
B,i) such that y∗B,i−i =

(
w̄B,i1 ,

{
āB,ij

FB(Ω
B,w̄

B,i
1

)

}
j∈S∗B,i\{1,i}

)
,∑

j∈S∗B,i
y∗B,ij = v(S∗B,i), and (S∗B,i, w̄

B,i
1 ) solves

max
(T,y1)∈ρi(N)×[η,1]

{
[v(T )− y1]FB(ΩB,y1)

1 + {|T | − 2}δ

}
, (1)

and i accepts a proposal at any continuation game Gi(B) only if it offers her at least āB,ii ,
where for all k ∈ N \ {1},

āB,kk =
δ
[
v(S∗B,k)− w̄

B,k
1

]
FB

(
ΩB,w̄B,k1

)
1 + {|S∗B,k| − 2}δ

.

Note that it is easy to see that the restriction (a) |S| = |T | =⇒ v(S ∪ {1}) = v(T ∪
{1}),∀S, T ⊆ N \{1} implies that for all j, k 6= 1, |S∗B,j| = |S∗B,k| and y∗B,j = y∗B,k. Hence,
given this restriction, (b) ∀ j, k 6= 1, āB,jj = āB,kk .

Now, let us consider the two possible kinds of proposals that i can make at this information
set: acceptable (where the uninformed agents addressed by the proposal are supposed to
accept it), and unacceptable (where at least one of uninformed parties addressed by the
proposal rejects it). An acceptable proposal by i would propose a coalition T and a
distribution y of its coalitional worth among its members such that every j ∈ T \ {i, 1},
FB(ΩB,y1)yj ≥ āB,jj . This is because, by construction of �1

r, the informed party responds
last to a proposal. And so, while responding to any proposal involving some coalition
S, any uninformed party j ∈ S \ {1, i} who is prescribed to accept this proposal, is still
uncertain about whether the informed party would accept the proposal in future or not.
Hence, j would accept a proposal only if she is offered a sure amount yj that leads to an
expected payoff as great as āB,jj .19

19Thus, offering greater amounts to the informed party actually decreases the amount that is needed
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Note that the best acceptable proposal that i as a proposer can make at continuation
game Gi(B) is one that solves the following maximization problem:

max
(T,y1)∈ρi(N)×[η,1],1∈T

{v(T )− y1}FB(ΩB,y1)−
∑

j 6=T\{1,i}

āB,jj

 , (2)

where objective function of (2) is the expected payoff to i 6= 1 by proposing to form
a coalition T that contains 1, offering y1 to 1 and āB,jj to all other agents j in T . By
restriction (a), and hence (b), it follows that the worths of the coalitions chosen as
solution to (2) by any i, j 6= 1 must be identical. Similarly, the amount y1 to be offered to
1 chosen as a solution to (2) by any i, j 6= 1 must be same. Now, it is easy to see that the
solution to (1) also solves (2) and vice-versa.20 This implies that there is no profitable
one-deviation of making an acceptable proposal available to any uninformed party i 6= 1

at any continuation game Gi(B).

Further, making an unacceptable proposal is never optimal for i as it only causes a delay
of a period without updating the beliefs held by uninformed parties, and passes the
proposer power to some other agent. So the maximum possible expected payoff from
making such an unacceptable proposal is āB,ii . Note that, by construction, this is less
than the expected payoff of āB,ii

δ
that i would have got had she proposed according to σ∗.

Thus, we can infer that there is no profitable one-deviation available to any uninformed
party at any information set where she has the move to propose.

Finally, consider any information set where the informed party has the move to respond
to a proposal made by some uninformed agent i 6= 1. Irrespective of the amount offered
by i’s proposal to any type of the informed party 1π, if 1π one-deviates to reject and make
a counteroffer, then, as prescribed in σ∗, she would make a non-informative unacceptable
proposal in the next period. This would lead to an off the candidate equilibrium path
information set (with respect to σ∗) where beliefs get revised as per Bayes’ rule, to a suit-
able conditional distribution over [η,max{η, δ2ȳ1}] where ȳ1 is the amount prescribed to
be offered to the informed party 1 by σ∗ at this information set. By sequential rationality
(and our regularity condition) ȳ1 ∈ [η,max{η, δ2ȳ1}] implying that ȳ1 = η. Hence, such
a unilateral one-deviation is not profitable for 1π.

to be offered to obtain agreement of an uninformed party to a proposal.
20A formal argument is as follows. Suppose there exists a solution (T I , wI1) to (1), which does not

solve (2). That is, for any (T II , wII1 ) that solves (2), either |T I | 6= |T II | or wI1 6= wII1 or both. Therefore,

by restrictions (a) and (b), for all j 6= 1, āB,jj =
δ[v(T I)−wI

1]FB

(
Ω

B,wI
1

)
1+{|T I |−2}δ ≥

δ[v(T II)−wII
1 ]FB

(
Ω

B,wII
1

)
1+{|T II |−2}δ . Now,[{

v(T II)− wII
}
FB(ΩB,wII )−

∑
j 6=T II\{1,i} ā

B,j
j

]
>

[{
v(T I)− wI

}
FB(ΩB,wI )−

∑
j 6=T I\{1,i} ā

B,j
j

]
,

which implies that
[v(T II)−wII ]FB(ΩB,wII )

1+{|T II |−2}δ >
[v(T I)−wI ]FB(ΩB,wI )

1+{|T I |−2}δ , which in turn contradicts our supposi-
tion that (T I , wI) solves (1).
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Hence, σ∗ constitutes an equilibrium.

Proof of (2): Fix any equilibrium σ′ and any uninformed agent i 6= 1. Note that, by
Corollary 1, each type of informed agent accepts a proposal on the equilibrium path if
and only if she is offered an amount no less than her outside option. Further, Corollary
1 implies that: if i is the first proposer, then either the informed party 1 quits the game
or else she accepts i’s proposal. In either case the game ends in the first period, and
there is no continuation game. For each uninformed party j 6= 1, let x̄[η,1],j

j denote the
equilibrium expected payoff of j, when she is the first proposer in our bargaining game
and all agents play according to σ′. Define for all j 6= 1, ã[η,1],j

j := δx̄
[η,1],j
j .

Now, as discussed in the proof of (1) above, making an acceptable proposal (given
σ′) is always more profitable to i than making an unacceptable proposal. Hence, σ′

is an equilibrium only if: whenever i is the first proposer of our bargaining game,
she proposes (S ′[η,1],i, y

′
[η,1],i) where

∑
t∈S′

[η,1],i

y′[η,1],it
= v(S ′[η,1],i), y′[η,1],i1

= w
′[η,1],i
1 , and

y′[η,1],ij
=

ã
[η,1],i
j

F[η,1]

(
Ω[η,1],y′

[η,1],i1

) , ∀ j ∈ S ′[η,1],i \ {1, i} such that:21

(S ′[η,1],i, w
′[η,1],i
1 ) solves max

(T,y1)∈ρi(N)×[η,1],1∈T

{v(T )− y1}F[η,1]

(
Ω[η,1],y1

)
−

∑
j 6=T\{1,i}

ã
[η,1],j
j

 .
(3)

Note that maximization problem (3) identifies the best possible acceptable proposal that
any uninformed party i 6= 1 can make in the continuation game Gi([η, 1]). Since, our
bargaining protocol requires rejectors to propose next period, every active agent while
responding, can always reject and propose the best possible acceptable proposal at the
very next period. That is, for any agent j,

ã
[η,1],j
j ≥ max

(T,y1)∈ρj(N)×[η,1],1∈T
δ

{v(T )− y1}F[η,1](Ω[η,1],y1)−
∑

l 6=T\{1,i}

ã
[η,1],l
l

 .
Now, if σ′ requires this weak inequality to be strict, then it prescribes rejection of pro-
posals that offer j more expected payoff than what she can get by making the best
possible acceptable proposal in the next period, which would not constitute equilibrium.

21Note that y′[η,1],i is a specific distribution of the worth of the coalition S′[η,1],i, constructed in a manner
that it is acceptable to all uninformed members of S′[η,1],i other than i. This construction depends on
the relevant beliefs, and is described below for the information sets with prior beliefs.
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Therefore, if σ′ is an equilibrium then:

ã
[η,1],j
j = max

(T,y1)∈ρj(N)×[η,1],1∈T
δ

{v(T )− y1}F[η,1](Ω[η,1],y1)−
∑

l 6=T\{1,i}

ã
[η,1],l
l

 for all j. (4)

Now, as argued in proof of (1) above, the restriction (a) |S| = |T | =⇒ v(S ∪ {1}) =

v(T ∪{1}),∀S, T ⊆ N \{1} implies that any solution to (1) also solves the maximization
(3) and vice-versa. Hence, if σ′ is an equilibrium then (as described in Remark 1) i
must propose a (S∗[η,1],i, y

∗
[η,1],i) at the start of the game. By Theorem 3 and Corollary

1, any type of the informed party 1π with π ≤ y∗[η,1],i1
= w̄

[η,1],i
1 would accept it, while

any other type would quit the game (as shown in Theorem 3). Finally, if any type of
the informed party gets to propose in the first period of the game, then, as argued in
Theorem 1, she makes an unacceptable proposal, which would get rejected by the the top
ranked uninformed player (out of those to whom the unacceptable proposal was made)
according �1

r; who, in turn, proposes the aforementioned proposal (S∗[η,1],i, y
∗
[η,1],i) in the

next period.

Since the equilibrium σ′ was chosen arbitrarily, and since beliefs on the equilibrium path
must be generated using Bayes’ rule (by definition), the result follows.

Remark 2. Note that Theorem 4 characterizes a class of equilibria Σ∗, which is essen-
tially unique in the sense that: any equilibria outside Σ∗ has an analogue in Σ∗ that gen-
erates the same equilibrium path for a given first proposer. This result becomes stronger
if the underlying characteristic function, and the prior beliefs generate a unique solution
to the problem max

{
[v(T )−y1]FB(ΩB,y1 )

1+{|T |−2}δ : (T, y1) ∈ ρi(N)× [η, 1]
}
. In that case, Σ∗ becomes

a singleton set, and so, Theorem 4 implies that any equilibrium must generate the same
equilibrium path irrespective of the first proposer.

The next result characterizes the equilibrium of our bargaining game, for a more
general form of underlying cooperative game that need not be symmetric around the
informed party 1. However, this absence of symmetry introduces new complications,
which require us to first define the following algorithm, and then use it to characterize
the equilibrium for general games (where for any S, T ⊆ N \ {1}, |S| = |T | need not
imply that v(S ∪ {1}) = v(T ∪ {1})).

Algorithm ΘB: Consider any information set where uninformed parties hold some (ar-
bitrary) belief B - that is, believe the informed party’s outside option to be distributed
with a conditional distribution FB(.) over a support B̃ ∈ B([0, 1]). Define a sequence of
{(A∗kB, w∗kB)}k of pairs of ‘coalitions and reals’ such that
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• (A∗B1 , w
∗B

1 ) solves

max
(T,y1)∈ {S:S⊆N}×[η,1]

{
[v(T )− y1]FB(ΩB,y1)

1 + {|T | − 2}δ

}
(5)

Define p∗1
B to be the maximized value of (5).

• For any k > 1, define ABk−1 := ∪k−1
l=1 A

∗
l
B. If ABk−1 = N then stop, or else construct

(A∗k
B, w∗k

B) to be a solution to

max
(T,y1)∈ {S:S⊆N}×[η,1]

[
{v(T )− y1}FB(ΩB,y1)−

∑
i∈T∩Ak−1

p∗Bi

]
1 + {|T \ Ak−1| − 2}δ

(6)

Define p∗k
B be the maximized value of (6). Also, defineW ∗B := max{w∗1B, w∗2B, . . .}.22

Now, we use the algorithm Θ := {ΘB}B̃∈B([0,1]) to define the following class of strategy-
belief pairs Γ∗(�1

r).

Definition 2. Γ∗(�1
r) is the set of strategy-belief pairs θ∗ which prescribe that:

1. for any uninformed party i 6= 1, at any continuation game Gi(B),

• she accepts a proposal (T, y) if and only if all uninformed parties j ∈ T \ {1}

are offered a (sure) share of at least
p∗Bkj

FB(ΩB,y1 )
(as defined in algorithm ΘB)

where for all t ∈ N \ {1}, kt := min{k ∈ N : t ∈ A∗kB}.

• she proposes (S∗B,i, y
∗
B,i) such that S∗B,i = A∗Bki, y

∗
B,i1

= w∗Bki and for all j ∈

S∗B,i \ {i, 1}, y∗B,ij =
p∗Bkj

FB

(
Ω
B,w∗B

ki

) .

2. At any continuation game G1(B), all types of the informed party 1π make an un-
acceptable proposal (T ∗B, z

∗
B) such that: (i) the maximal agent in T ∗B \ {1} according

to �1
r, say m, satisfies the equation w∗Bkm = W ∗B, and (ii) there exists l ∈ T ∗B \ {1}

such that z∗B l <
p∗Bkl

FB

(
ΩB,z∗

B1

) . Further, at any information set where, any type of the

informed party 1π has the move to respond, she accepts if it offers her an amount
at least as great as π or else she quits.

3. At any off the prescribed path (by θ∗) information set where Bayes’ rule cannot be
applied, if an uninformed i 6= 1 receives an acceptable proposal (as per the condition

22Note that for any belief B, ΘB may not generate a unique sequence
{(
A∗Bk , w

∗B
k

)}
as optimization

problems (5) and (6) may have multiple solutions. The W ∗B , however, is unique for a given belief B.
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1 above) from the informed party 1π, then she changes her beliefs to put full prob-
ability on the event that π = η. At any other off the prescribed path information
set where Bayes’ rule is not applicable, any uninformed party keeps her beliefs un-
changed as those held at the previous period. At every other information set, beliefs
are updated in accordance to Bayes’ rule.

We show below that for the general class of cooperative games where uninformed
parties may not be symmetric in nature, the aforementioned strategy-belief pair θ∗ con-
structed using the algorithm Θ, would constitutes a generically unique equilibrium given
out-of-equilibrium beliefs.

Theorem 5. For any �1
r,�p:

1. any θ∗ ∈ Γ∗(�1
r) constitutes an equilibrium.

2. if there exists an equilibrium θe /∈ Γ∗(�1
r), then there exists a corresponding θ∗e ∈

Γ∗(�1
r) such that θe and θ∗e prescribe the same actions and beliefs, at all information

sets on the equilibrium path.

Proof: See Appendix.

Remark 3. As argued in Remark 2, for any given �1
r, Theorem 5 characterizes an

essentially unique class of equilibria Γ∗(�1
r), where any equilibrium outside Γ∗(�1

r) has an
analogue in Γ∗(�1

r), which generates the same equilibrium path for a given first proposer.
Also, as before, the result becomes stronger if the underlying characteristic function, and
the prior beliefs generate unique solutions to (5) and (6) in algorithm ΘB0. In that case,
Γ∗(�1

r) becomes a singleton set, and so, Theorem 5 implies that any equilibrium must
generate the same equilibrium path.

In the following corollary, we present sufficient condition for formation of the grand

coalition on the equilibrium path.

Corollary 2. Whenever the prior belief is a uniform distribution over [η, 1]: if v(N)
|N |−1

>
v(S)
|S|−1

,∀ S ( N then the unique equilibrium outcome of our bargaining game is formation
of the grand coalition N . Further,

• if 1 is the first proposer, on the equilibrium path, 1 proposes {1, j̃} to any un-
informed agent j̃, offering her an amount strictly less than 2δ(1−η)

1+(|N |−2)δ
.23 Agent j̃

rejects this proposal, and proposes in the next period the grand coalition N , offering
all other uninformed agents the amount 2δ(1−η)

1+(|N |−2)δ
, offering 1 the amount 1+η

2
, and

this proposal is accepted with probability 1
2
(or else the game ends). The expected

exante equilibrium payoff of j̃ is (1−η)
1+(|N |−2)δ

, while that of other uninformed agents is
δ(1−η)

1+(|N |−2)δ
.

23She could propose any other proposal that would be unacceptable to j̃.
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• if some uninformed party j 6= 1 is the first proposer, on the equilibrium path, she
proposes the grand coalition N offering all other uninformed agents the amount

2δ(1−η)
1+(|N |−2)δ

, offering 1 the amount 1+η
2
, and this proposal is accepted with probability

1
2
(or else the game ends). The expected exante equilibrium payoff of j is (1−η)

1+(|N |−2)δ
,

while that of other uninformed agents is δ(1−η)
1+(|N |−2)δ

.

Proof: It is easy to see that this result follows from statement (2) of Theorem 5 if
A[η,1]

1 = N . Note that given the prior belief of uniform distribution over [η, 1], for any
x ∈ [η, 1], the probability of the informed party 1 having an outside option less than or
equal to x, is x−η

1−η .

Now, fix any such x ∈ (η, 1], and note that for any S ( N with v(S) > x:

(v(N)− x)(x− η)

(v(S)− x)(x− η)
=

(v(N)− x)

(v(S)− x)
>
v(N)

v(S)
>
|N | − 1

|S| − 1
, 24 (7)

and so, for any δ ∈ (0, 1), we have

(|N | − 1)

(|S| − 1)
>

1 + (|N | − 2)δ

1 + (|S| − 2)δ
.25 (8)

Now, since x ∈ (η, 1] and δ ∈ (0, 1) were arbitrarily chosen, from (7) and (8), it follows
that:

(E)
[v(N)− x]

(
x−η
1−η

)
1 + (|N | − 2)δ

>
[v(S)− x]

(
x−η
1−η

)
1 + (|S| − 2)δ

, ∀ S ⊂ N with |S| ≥ 2, ∀ x ∈ (η, 1]

By the maximization problem (5), (E) implies that A[η,1]
1 = N . And so, it follows from

statement (2) of Theorem 5 that w∗[η,1]
1 must solve (5) for the prior beliefs. Therefore,

w∗
[η,1]
1 must solve the maximization problem max

x∈[η,1]
g(x) where:

g(x) :=
δ[1− x]

(
x−η
1−η

)
1 + (|N | − 2)δ

,∀ x ∈ [η, 1].

It is easy to see that w∗[η,1]
1 = 1+η

2
, g′′(1+η

2
) < 0, and p∗[η,1]

1 = δ(1−η)/4
1+(|N |−2)δ

. Further, given
our prior belief, it is easy to see that the offer 1+η

2
would be accepted by the informed

party with probability 1
2
. Hence, the result follows.

24The first inequality follows from the fact that any fraction greater than 1, sees a fall in its value if
the numerator and the denominator are increased by the same amount. The second inequality follows
from our supposition.

25It can easily be seen that any function h(δ) := 1+bδ
1+aδ is increasing over [0, 1] when b > a (as h′(δ) is

positive over [0, 1]).
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4 Discussion

4.1 The regularity condition

There is a possibility that at some information sets of our bargaining game; the private
information is believed to be too small, that is, range of the support of beliefs held by
uninformed parties is too small to affect their proposal decisions. This is a peculiarity
that arises out of the alternating offers nature of our game where the uninformed parties
must offer an agent 10 an amount greater than 0, even when they are certain that π = 0.
This is because, any type of agent 1 has the option to reject a proposal and make a
counteroffer proposing the same proposal with a slightly reduced share offered to the
previous proposer, and a slightly greater share demanded for herself. Since all agents
derive disutility from delay, any uninformed party, say j, would choose to avoid such
delay on the equilibrium path by offering agent 1π the amount

max {π, βj} where βj := max
S⊆N,j∈S

δv(S)

1 + (|S| − 1)δ
,

even when j knows 1π’s outside option to be π for sure. Therefore, at any information set
where uninformed parties believe π ∈ [a, b] with b < min

j 6=1
βj, any such type of informed

agent, irrespective of her outside option, would find it profitable to make an acceptable
proposal (S∗, ȳ) such that S∗ solves max

S⊆N
δv(S)

1+(|S|−1)δ
and ȳk is equal to the maximized value

for all k ∈ S∗ \ {1}.26 Our regularity condition R rules out such information sets where
incompleteness of information about outside option of the informed party, which is the
core issue of our paper, fails to affect equilibrium decisions in any manner.

4.2 A model variation

Note that our bargaining game allows agents to quit the game only while responding to
an offer. We discuss below a variant of our game where the agents can only quit while
proposing.

Suppose that the informed party is the first proposer in this altered game. Let x∗ be
the highest acceptable demand that 1 can make in any equilibrium. Then for all π ≤ x∗,
agent 1π will demand x∗ in the first period, while all types with π > x∗ would quit in
the first period. In case, the informed party deviates by demanding an amount in excess
of x∗, assume that beliefs remain unchanged at this information set (off the equilibrium
path), leading to this offer being rejected by at least one of the uninformed parties in
the proposed coalition, after which the rejector would make the equilibrium proposal
prescribed to her. On the other hand, if the informed party is responding to a proposal
that offers her an amount y1, she will accept if y1 ≥ δmax{x∗, π}. In case, she rejects, the

26The proof follows from Chatterjee, Dutta, Ray and Sengupta [5].
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informed party will quit if π > x, or else demand the amount x∗. Thus, the equilibrium
path will not last any longer than two periods.

4.3 Out-of-equilibrium beliefs

We use out-of -equilibrium beliefs in Theorems 4 and 5, essentially to rule out the in-
formed party making a potentially informative rejected offer. We have, however, shown
that an equilibrium in which such an (informative) offer is made is impossible in any
stationary PBE of the game. Thus, in our model, these beliefs are used to construct the
equilibrium but we cannot specify beliefs that will give rise to the opposite conclusion in
any equilibrium.

5 Appendix

5.1 Proof of Theorem 5

Proof of (1): Fix any uninformed party i 6= 1. By construction of θ∗, at any continuation
game Gi(B), i is prescribed to propose some A∗Bki (as defined in ΘB), offer the informed
party 1 the amount w∗Bki (again, as defined in ΘB), and offer to all other uninformed

agents j ∈ A∗Bki the amount
p∗Bkj

FB

(
Ω
B,w∗B

ki

) .
Note that, as argued in proof of (1) of Theorem 4, making an acceptable proposal (where
all uninformed agents addressed by it, accept) is more profitable to i than making an un-
acceptable proposal (where θ∗ prescribes at least one of the uninformed parties addressed
by it to reject) at all relevant information sets, as the latter would cause a period of
delay without updating any beliefs. Therefore, the best proposal that i can make when
all other agents are playing according to θ∗ must solve the problem:

max
(T,y1)∈ρi(N)×[η,1],

1∈T

v(T )− y1 −
∑

j∈T\{1,i},
j /∈ABki−1

p∗Bkj
FB(ΩB,y1)

−
∑

j∈T\{1,i},
j∈ABki−1

p∗Bkj
FB(ΩB,y1)

FB(ΩB,y1), (9)

where objective function of (9) is the expected payoff to i by (acceptably) proposing
to form a coalition T that contains 1, while offering y1 to 1 and

p∗Bkj
FB(ΩB,y1 )

to all other
uninformed agents j in T . Note that by construction of algorithm ΘB,

p∗Bkl =

δ

{v(A∗Bkl)− w
∗B
kl

}
FB

(
ΩB,w∗Bkl

)
−

∑
t∈A∗Bkl

∩ABkl−1

p∗Bkt


1 +

(
|A∗Bkl \ A

B
kl−1| − 2

)
δ

,∀ l 6= 1 (10)
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where AB0 := ∅. Further, by construction of ΘB; for each j ∈ A∗Bki \ [ABki−1 ∪ {1, i}],
p∗Bki = p∗Bkj := P ′ (say), and A∗Bki = A∗Bkj := A′ (say). Therefore, by construction, θ∗

prescribes i to propose A′ at the start of continuation game Gi(B), offering the informed
party w∗Bki , and other uninformed members of A′ the amount P ′.

Now, suppose that (A′, w∗Bki) does not solve the maximization problem (9). Therefore,
there exists a tuple (S ′, y′1) that solves (9); but either S ′ 6= A′ or y′1 6= w∗Bki or both.27

Note that by (10) and construction of ΘB,

P ′ ≥

δ

{v(S ′)− y′1}FB
(
ΩB,y′1

)
−

∑
t∈S′∩ABki−1

p∗Bkt


1 + (|S ′ \ ABki−1| − 2)δ

,

and so, from (9) it follows that:

{v(S ′)− y′1}FB(ΩB,y′1
)−

(
|S′\ABki−1|−2

)
δ

{v(S′)−y′1}FB
(

ΩB,y′1

)
−

∑
t∈S′∩AB

ki−1

p∗Bkt


1+(|S′\ABki−1|−2)δ

−
∑

t∈S′\{1,i},
t∈ABki−1

p∗Bkt

≥ {v(S ′)− y′1}FB(ΩB,y′1
)−

[
|S ′ \ ABki−1| − 2

]
P ′ −

∑
t∈S′\{1,i},
t∈ABki−1

p∗Bkt

>
{
v(A∗Bki)− w

∗B
ki

}
FB(ΩB,w∗Bki

)−
[
|A∗Bki \ A

B
ki−1| − 2

]
P ′ −

∑
t∈A∗B

ki
\{1,i},

t∈ABki−1

p∗Bkt

which implies that:28

[v(S ′)− y′1]FB(ΩB,y′1
)−

∑
t∈S′\{1,i},
t∈ABki−1

p∗Bkt

1 + {|S ′ \ ABki−1| − 2}δ
>

[
v(A∗Bki)− w

∗B
ki

]
FB

(
ΩB,w∗Bki

)
−

∑
t∈A∗B

ki
\{1,i},

t∈ABki−1

p∗Bkt

1 + {|A∗Bki \ A
B
ki−1| − 2}δ

,

which violates (6) in the construction of ΘB, and thus, leads to a contradiction. Therefore,
whenever all players other than i play according to θ∗, there is no profitable unilateral
one-deviation from θ∗ available to i, at any information set where she has the move to
propose.

Now, note that the response prescriptions for the informed party 1 as well as the off the
prescribed path beliefs of θ∗, are the same as that of σ∗ in Definition 1. Further, as in σ∗,

27Note that for any possible belief B, FB(.) is non-decreasing and bounded in y1, and so, the fact
|N | <∞ implies that a solution to (9) always exists.

28Note that our supposition implies strict inequality in the last inequality mentioned above.
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all types of the informed party make a non-informative unacceptable proposal. Therefore,
as argued in proof of 1 of Theorem 4, for any type of the informed party 1π, making a
unilateral one-deviation of rejecting a proposal (and hence, making a counteroffer), leads
to Bayes’ revision of uninformed parties’ belief that π = η - implying that 1π would be
offered η two periods after the one-deviation. Thus, such a one-deviation is not profitable.

Finally, at any information set where 1π has the move to propose: if she unilaterally one-
deviates to make an acceptable proposal, then arguing as in proof of (1) of Theorem 4, we
can show that such a deviation is not profitable. On the other hand, if 1π unilaterally one-
deviates by making an unacceptable proposal different from the one prescribed in θ∗, then
such a proposal either: (i) involves a two member coalition {1, j} where w∗Bkj = W ∗B, or
(ii) it involves a two member coalition {1, j} where w∗Bkj 6= W ∗B, or else (iii) it involves a
coalition comprising of more than two members. All these cases (i), (ii) and (iii) lead to off
the equilibrium path information sets where Bayes’ rule cannot be applied. As prescribed
in θ∗, the beliefs remain unaffected by these one-deviations, and so, when all other agents
are playing as per θ∗, the expected equilibrium payoffs to 1π post such deviations, are
not greater than that obtained by not deviating from θ∗. Thus, the informed party 1 has
no profitable unilateral one-deviation at any information set where she has the move to
propose. Hence, the result follows.

Proof of (2): Fix any equilibrium θ′ and any uninformed agent i 6= 1. Note that, by
Corollary 1, each type of informed agent accepts a proposal on the equilibrium path if
and only if she is offered an amount in excess of her outside option. Further, Corollary
1 implies that: if i is the first proposer, then either the informed party 1 accepts i’s
proposal or else quits the game in the very first period. Thus, the bargaining game ends
in the first period, and hence, there is no continuation game on the equilibrium path other
than Gi(B0), where B0 is the common prior belief held over [η, 1]. For each uninformed
party j 6= 1, let x′j

B0,j denote the equilibrium expected payoff of j, when she is the first
proposer in our bargaining game, and all agents play according θ′. That is, x′j

B0,j is j’s
equilibrium payoff in the continuation game Gj(B0) when all agents play θ′. Define for
all j 6= 1, a′j

B0,j := δx′j
B0,j

Now, as discussed in proof of statement (2) of Theorem 4 above, making an acceptable
proposal (with respect to θ′) is always more profitable to i than making an unacceptable
proposal. Note that the best acceptable proposal which i can make must solve the
problem:

max
(T,y1)∈ρi(N)×[η,1],

T31

{v(T )− y1}FB0(ΩB0,y1)−
∑

j∈T\{1,i}

a′
B0,j
j

 , (11)

where objective function of (11) is the expected payoff to i by proposing to form a coalition
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T that contains 1 (and i) while offering y1 to 1 and a
′B0,j
j

FB0
(ΩB0,y1

)
to all other uninformed

agents j in T .

Suppose that for each uninformed agent j 6= 1, θ′ prescribes j to propose an acceptable
proposal (T̄j, ȳj) in the continuation game Gj(B0). Therefore, as argued in the proof of
statement (2) in Theorem 4, we get that for all j 6= 1,

a′
B0,j
j = δ

{
v(T̄j)− ȳj1

}
FB0(ΩB0,ȳj1

)− δ
∑

k 6=T̄j\{1,j}

a′
B0,k
k . (12)

Hence, for all j 6= 1, i,

a′
B0,j
j = δ

{
v(T̄j)− ȳj1

}
FB0(ΩB0,ȳj1

)− δ
∑

k 6=T̄j\{1,i}

a′
B0,k
k + δa′

B0,j
j − δa′B0,i

i

implying that:

a′
B0,j
j = δ

{v(T̄j)− ȳj1
}
FB0(ΩB0,ȳj1

)−
∑

k 6=T̄j\{1,i}

a′
B0,k
k

+
(
a′
B0,j
j − a′B0,i

i

)
δ. (13)

Now, by (12), for all i 6= 1, j, a′B0,i
i ≥ δ

{
v(T̄j)− ȳj1

}
FB0(π ≤ ȳj1)− δ

∑
k 6=T̄j\{1,i} a

′B0,k
k ,

and so, from (13), we get that:
(
a′B0,j
j − a′B0,i

i

)
≤ δ

(
a′B0,j
j − a′B0,i

i

)
for all i ∈ T̄j \{1, j}.

Since δ ∈ (0, 1), this inequality implies that

(A) a′
B0,j
j ≤ a′

B0,i
i for all j 6= 1 and all i ∈ T̄j \ {1, j}.

Now, from (A) it follows that for all j 6= 1, a′B0,j
j = δ

{
v(T̄j)− ȳj1

}
FB0(ΩB0,ȳj1

) −
δ
∑

i∈T̄j\{1,i} a
′B0,i
i ≤ δ

[{
v(T̄j)− ȳj1

}
FB0(ΩB0,ȳj1

)−
(
|T̄j| − 2

)
a′B0,j
j

]
, which, by construc-

tion of
(
A∗B0

1 , w∗B0
1

)
in ΘB,29 implies that:

(B) a′
B0,j
j ≤

δ
[
v(T̄j)− ȳ1j

]
FB0

(
ΩB0,ȳ1j

)
1 +

(
|T̄j | − 2

)
δ

≤
δ
[
v(A∗B0

1 )− w∗B0
1

]
FB0

(
Ω
B0,w∗

B0
1

)
1 +

(
|A∗B0

1 | − 2
)
δ

,∀ j 6= 1.

In the following part of the proof, we will use the inequalities (A) and (B) to establish
that (T̄j, ȳj) must involve one of the pairs

(
A∗kj

B0 , w∗kj
B0

)
constructed using ΘB0 , in the

following manner:

T̄j = A∗kj
B0 ,

∑
t∈S′

y′t = v(S ′), ȳj1 = w∗kj
B0 , and ȳjt =

p∗B0
1

FB0

(
Ω
B0,w∗

B0
1

) , ∀ t ∈ T̄j \ {1, j}.
29See equation (5).
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Given construction of Γ∗(�1
r), this will establish the result.

We begin by focussing on the collection of uninformed parties in AB0
1 (as defined by ΘB0).

Suppose that there exists an agent j′ ∈ AB0
1 such that θ′ prescribes her an acceptable

proposal (T̄j′ , ȳj′) at the start of continuation game Gj′(B0) such that it is not consistent
with the algorithm ΘB0 . That is, (T̄j′ , ȳj′1) does not solve (5). In other words,

(C) (T̄j′ , ȳj′1) /∈ argmax
{
δ[v(T )− y1]FB(ΩB,y1)

1 + {|T | − 2}δ
: (T, y1) ∈ {S : S ⊆ N} × [η, 1]

}
.

Note that,

a′
B0,j′

j′ ≥ δ

{v(A∗B0
1 )− w∗B0

1

}
FB0

(
Ω
B0,w∗

B0
1

)
−

∑
i∈A∗B0

1 \{1,i}

a′
B0,i
i

 .
By (B), the inequality above implies that

δ
[
v(T̄j′)− ȳj′1

]
FB0

(
ΩB0,yj′1

)
1 +

(
|T ∗j′ | − 2

)
δ

≥ a′B0,j′

j′

≥ δ

{v(A∗B0
1 )− w∗B0

1

}
FB0

(
Ω
B0,w∗

B0
1

)
−
δ
(
|A∗B0

1 | − 2
) [
v(A∗B0

1 )− w∗B0
1

]
FB0

(
Ω
B0,w∗

B0
1

)
1 +

(
|A∗B0

1 | − 2
)
δ


=

δ
[
v(A∗B0

1 )− w∗B0
1

]
FB0

(
Ω
B0,w∗

B0
1

)
1 +

(
|A∗B0

1 | − 2
)
δ

,

which contradicts (C). Thus, we get that for all j ∈ AB0
1 , the best acceptable proposal

that j is prescribed by θ′ to make at start of Gj(B0) must involve some (A∗B0
1 , w∗B0

1 ) that
solves (5).30 Further, for all j ∈ AB0

1 ,

a′
B0,j
j =

δ
[
v(A∗B0

1 )− w∗B0
1

]
FB0

(
Ω
B0,w∗

B0
1

)
1 +

(
|A∗B0

1 | − 2
)
δ

= p∗B0
1 .

Now fix any natural number L > 1 such that AB0
L 6= N , and suppose that all j ∈

AB0
L propose A∗B0

kj
offering informed agent 1 the amount w∗B0

kj
, and offering all other

uninformed agents in A∗B0
kj

the amount p∗B0
ki
/FB0(Ω

B0,w∗
B0
kj

), at the start of Gj(B0). Given

this supposition, we present a proof by induction below, which shows that all uninformed
30That is, all agents in AB0

1 propose the coalition A∗B0
1 , offer w∗B0

1 to the informed party, and offer all
other uninformed agents i ∈ A∗B0

1 \ {1, i} the amount p∗B0
1 /FB0(Ω

B0,w∗B0
1

).
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agents in j ∈ AB0
L+1 must propose in the same manner at the start of Gj(B0). Note that,

by construction, AB0
L ⊆ A

B0
L+1, and hence, we only need to consider agents in AB0

L+1 \A
B0
L .

So, fix any j ∈ AB0
L+1 \ A

B0
L . As argued earlier, at start of Gj(B0), the best acceptable

proposal that j can make involves a pair (T̂j, ŷj1) that solves (11). Hence, using our
induction hypothesis, we get that:

a′
B0,j
j = δ

{v(T̂j)− ŷj1
}
FB0

(
ΩB0,ŷj1

)
−

∑
t∈T̂j\[{1,j}∪A

B0
L ]

a′
B0,t
t −

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


As before, using (A) we get that:

(D) a′
B0,j
j ≤

δ

{v(T̂j)− ŷj1
}
FB0

(
ΩB0,ŷj1

)
−

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


1 +

(
|T̄j \ AB0

L | − 2
)
δ

≤

δ

{v(A∗B0
L+1)− w∗B0

L+1

}
FB0(Ω

B0,w∗
B0
L+1

)−
∑

t∈[T̂j\{1,j}]∩A
B0
L

p∗B0
kt


1 +

(
|A∗B0

L+1 \ A
B0
L | − 2

)
δ

.
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Now, as before, suppose that (T̂j, ŷj1) does not solve (6). Therefore, by (D):

δ

{v(T̂j)− ŷj1
}
FB0

(
ΩB0,ŷj1

)
−

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


1 +

(
|T̂j \ AB0

L | − 2
)
δ

≥ a′
B0,j
j

≥ δ
[
v(A∗B0

L+1)− w∗B0
L+1

]
FB0

(
Ω
B0,w∗

B0
L+1

)
− δ

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt

−

δ2
(
|A∗B0

L+1 \ A
B0
L | − 2

){v(A∗B0
L+1)− w∗B0

L+1

}
FB0

(
Ω
B0,w∗

B0
L+1

)
−

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


1 +

(
|A∗B0

L+1 \ A
B0
L | − 2

)
δ

⇐⇒

δ

{v(T̂j)− ŷj1
}
FB0

(
ΩB0,ŷj1

)
−

∑
t∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


1 +

(
|T̂j \ AB0

L | − 2
)
δ

≥

δ

{v(A∗B0
L+1)− w∗B0

L+1

}
FB0

(
Ω
B0,w∗

B0
L+1

)
−

∑
t/∈[T̂j\{1,j}]∩A

B0
L

p∗B0
kt


1 +

(
|A∗B0

L+1 \ A
B0
L | − 2

)
δ

,

which implies that (T̂j, ŷ1j) solves (6). Thus, we get a contradiction. Thus, by the
induction proof we have established that for any uninformed party i 6= 1, the equilibrium
path generated by any θ′ in Gi(B0), is the same as that generated by some θ∗ ∈ Γ∗(�1

r).
Since, beliefs are generated on the equilibrium path using Bayes’ rule, the result follows
whenever an uninformed party is the first proposer in our bargaining game.

Now, consider the only remaining possibility that the informed agent 1 is the first pro-
poser. If that is the case, then, by Theorem 1, she makes an unacceptable proposal which
is subsequently rejected. However, such an unacceptable proposal passes the proposer
power to the highest ranked uninformed member of her proposed coalition as per �1

r, and
this uninformed agent gets the first chance to respond to 1’s proposal. So the informed
party, at the start of G1(B0), can do no better than making an unacceptable proposal
that passes the proposer power to an uninformed party j̃ such that p∗B0

j̃
= W ∗B0 . There-

fore, by construction of Γ∗(�1
r), and our inference from the previous paragraph, the result

follows when the informed party 1 is the first proposer in our bargaining game.
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